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Introduction

The notion of local gauge symmetries as introduced in 1929 by Weyl [1] turned out to

be a cornerstone of modern field theory since so-called gauge theories describe fun-

damental interactions very successfully. The prototype of a gauge theory is quantum

electrodynamics (QED), which describes nature with a so far unknown precision.

An impressive example is the anomalous magnetic moment of the muon gµ, where

the experimental results deviate from the theoretical prediction for aµ ≡ (gµ − 2)/2

at the order of 10−9 by maximally 2 σ [2]. Our present understanding is that

all fundamental interactions, strong interaction, electromagnetic interaction, weak

interaction and gravitational interaction, are described by some form of a gauge

theory.

Quantum chromodynamics (QCD), the theory of strong interactions, is based

on a non-Abelian SU(3) gauge symmetry. The property of QCD that led directly

to its discovery in 1973 [3, 4, 5] as a candidate theory of the strong interaction

is asymptotic freedom [3, 6, 7, 8, 9], i.e. the coupling strength decreases at short

distances and the quarks and gluons behave as effectively free particles. In turn,

the coupling increases with the distance and at a distance of about 1 fm it assumes

such large values that only bound states of quarks and gluons exits. The latter

property, which is called confinement, together with asymptotic freedom imply that

perturbative methods are applicable in QCD only at short distances, whereas they

fail at large distances (low energies). Confinement, spontaneous breaking of chiral

symmetry or the hadron mass spectrum are low-energy properties that can therefore

not be described by perturbation theory and require a non-perturbative treatment

of the theory.

With the framework of lattice gauge theories Wilson developed a non-perturbative

tool to investigate the low-energy structure of QCD [10]. In this framework he was

able to compute the non-relativistic quark/anti-quark potential in the static approxi-

mation showing that it increases linearly with the distance [10, 11]. Wilson proposed

to regularize QCD with a discrete Euclidean space-time lattice with the inverse lat-

tice spacing a−1 playing the rôle of an ultraviolet momentum cut-off. Then, in the

course of renormalization the continuum is recovered by removing the cut-off, i.e.

sending a → 0. This approach can also be understood as replacing the continuum
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INTRODUCTION

gauge theory by a discrete statistical mechanical system, an analogy that opens up

the possibility to simulate QCD on computers by means of Monte Carlo methods.

This framework facilitates investigations of low-energy properties of QCD from first

principles with the quark masses as freely tunable parameters.

Unfortunately such computer simulations are only possible with an immense

amount of computer resources. For this reason most of the current results have

been obtained only in the so-called quenched approximation, where vacuum polar-

ization effects of quark loops are neglected. However, even in this approximation

simulations with small enough values of the quark masses are not affordable necessi-

tating – besides the continuum extrapolation of physical quantities – an additional

extrapolation in the masses to the point where the masses take their physical values.

If the simulations can reach masses where chiral perturbation theory (χPT) is valid,

then this last step of the extrapolation can be performed using the analytical results

derived in χPT.

In QCD exist six flavors of quarks, whose (bare) quark masses are parameters

that need to be tuned. But, aiming at investigations of the low energy structure

of QCD, charm, bottom and top quarks can be considered as static to a good

approximation due to their large mass values. Moreover, the two lightest quarks

(up and down) are – when compared to the characteristic scale of QCD – to a good

approximation mass degenerate. Hence, the targets of lattice QCD are simulations

with a light doublet of mass degenerate quarks and one heavier quark, the strange

quark.

While for the extrapolation in the quark mass χPT can be of essential help,

the continuum extrapolation can only be performed by using small values of the

lattice spacing a, such that one is close enough to the continuum limit. However,

the computational costs increase approximately proportional to a−7 making it often

infeasible to work at small enough lattice spacing. The way out is the fact that lattice

QCD formulations are not unique and fortunately a formulation with genuine small

lattice artifacts can be constructed by means of an effective field theory as worked

out by Symanzik [12, 13, 14]. In this concept the lattice theory at finite values of

a is mapped to an effective continuum theory. Lattice expectation values are then

given by the corresponding continuum value plus correction terms proportional to

powers of the lattice spacing. The Symanzik improvement programme then means

to construct a discretization where at least the largest of those terms are absent.

The simplest case in this approach is the O(a) improvement, where all terms linear

in a vanish. However, lattice artifacts proportional to higher powers of a might still

be large. This, together with the question for which values of a the effective theory

is valid, is one of the crucial questions in lattice QCD and needs to be investigated

through a detailed analysis of the scaling behavior in a of physical quantities.
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All this illustrates the need for progress on the following topics:

• Formulations of lattice QCD with reduced lattice discretization errors are es-

sential in order to control the continuum extrapolation reliably. Those formu-

lations are available, but they need a test in practice, which concerns the size

of residual lattice artifacts on physical observables. In addition, it is necessary

to investigate how a lattice theory as such differs from its continuum counter

part.

• A lattice QCD formulation should allow for simulations at small enough quark

masses with affordable computational effort in order to make at least contact

to chiral perturbation theory possible. Ideally, it would be desirable, of course,

to work directly at the physical point. Moreover, simulations with two light

mass degenerate quarks (up and down quark) and one heavier quark (strange

quark) should be possible.

• Improvement and development of new algorithms is needed to reach small

enough quark masses and small enough lattice spacings at possibly lower com-

putational effort.

Motivated by these demands, we consider in this work the so-called Wilson twisted

mass formulation of lattice QCD, which is expected to satisfy the requirements

formulated above by the first two items. We present a detailed scaling test of this

formulation in the quenched approximation and show that in fact lattice artifacts

linear in a are absent and residual lattice artifacts are small (see chapter 2).

Then, in chapter 3, we introduce an algorithm for simulations of full QCD with

scaling properties towards small quark masses that are significantly better than those

of other presently used algorithms. This improvement is illustrated by comparing it

to other state-of-the-art algorithms available in the literature.

In chapter 4 we finally present a study of the phase structure of lattice QCD with

two flavors of Wilson twisted mass fermions and several discretizations of the gauge

part in the action. This investigation is an essential preparatory work for any future

large scale simulation and reveals evidence for the existence of a first order phase

transition. A comprehensive understanding of the phase structure was missing so

far, and became only possible with the Wilson twisted mass formulation of lattice

QCD.
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Chapter 1

Theoretical basis

This chapter is devoted to give a summary of the basic theoretical concepts used for

this work. We start with shortly introducing quantum chromodynamics (QCD) as

the theory of strong interactions followed by a description of its regularization by the

standard Wilson lattice QCD approach, as it can be found in textbooks such as [15,

16, 17, 18, 19, 20]. Then we discuss in more detail several more recent formulations

of lattice QCD and compare their properties. Aiming at computer simulations of

lattice QCD we finally present methods and algorithms for this purpose.

1.1 QCD in Euclidean space-time

In this section we shortly derive the SU(3) gauge invariant QCD Lagrangian, describe

its quantization by means of the path integral formalism and the transition from

Minkowski to Euclidean space-time. The QCD Lagrangian is constructed such that

the standard lattice regularization follows immediately.

Motivated by the demand of local gauge symmetry, we consider a continuous

group of (gauge) transformations, represented by a set of SU(3) matrices V (x), and

a quark of flavor q, represented by a color-spinor field ψαc,q(x) with SU(3) color index

c = 1, 2, 3 and Dirac spinor index α = 0, 1, 2, 3. Suppressing all these indices in the

following, the fields ψ(x) transform like

ψ(x) → V (x)ψ(x) . (1-1)

In order to construct a gauge invariant kinetic energy term for these quark fields,

we define the gauge covariant derivative in direction µ by the limiting procedure:

Dµψ(x) = lim
a→0

1

a
[U(x, x+ aµ̂)ψ(x+ aµ̂)− ψ(x)] , (1-2)

5



CHAPTER 1. THEORETICAL BASIS

where µ̂ is a unit vector in direction µ∗. For later purposes we extract the forward

covariant difference operator

∇µψ(x) =
1

a
[U(x, x+ aµ̂)ψ(x+ aµ̂)− ψ(x)] , (1-3)

and define also the backward covariant difference operator

∇∗
µψ(x) =

1

a

[

ψ(x)− U(x, x − aµ̂)ψ(x− aµ̂)
]

. (1-4)

In definition (1-2) we have introduced a so-called parallel transporter U(x, y), a

unitary SU(3) matrix, which obeys the transformation law

U(x, y) → V (x)U(x, y)V †(y) , (1-5)

and we set U(x, x) = 1. Since U(x, y) is a SU(3) matrix and a continuous function

of its arguments, for infinitesimal a it can be represented as

U(x, x+ aµ̂) = exp
(

−igaAiµ(x+
a

2
µ̂)λi +O(a3)

)

. (1-6)

Here g is the bare gauge coupling, introduced for later convenience, and Aiµ is a

vector field for each generator λi of the transformation group. Expanding (1-6) in

a and inserting it into definition (1-2) yields in the limit a → 0 for the continuum

covariant derivative associated with the local SU(3) gauge symmetry

Dµ = ∂µ − igAiµλi , (1-7)

which has the correct gauge transformation properties and where Aiµ is the con-

tinuum gauge potential. With what we have defined so far we can already write a

locally gauge invariant Lagrangian containing a kinetic energy term for the quark

field ψ(x) and a quark mass term. In order to complete the Lagrangian we have to

find a kinetic term for the field Aµ itself. A term like this can be constructed by

defining

U2(x;µ, ν) =U(x, x+ aµ̂)U(x+ aµ̂, x+ aν̂ + aµ̂)

× U(x+ aν̂ + aµ̂, x+ aν̂)U(x + aν̂, x)
(1-8)

as the product of the four parallel transporters at the corners of a small square in

space-time, the plaquette. However, U2(x;µ, ν) itself is not gauge invariant, and

in order to convert it to a locally gauge invariant expression we have to take the

trace. Inserting (1-6) into (1-8) and using the Campbell-Baker-Hausdorff formula

we achieve by expanding to order a6

TrU2(x;µ, ν) = Tr[1]− 1

4
g2a4(F i

µν)
2 +O(a6) , (1-9)

∗We use the non-standard notation a (instead of for instance ǫ), because a will be identified

with the lattice spacing later on.
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1.1. QCD IN EUCLIDEAN SPACE-TIME

where we introduced the field strength

F i
µν = ∂µA

i
ν − ∂νAiµ + gf ijkAjµA

k
ν . (1-10)

f ijk are the structure constants of the symmetry group (see appendix A). By con-

struction (F i
µν)

2 is locally gauge invariant. Now we can write down the QCD La-

grangian that is renormalizable, conserves parity and is invariant under time rever-

sion [3, 4, 5]

L = −1

4
(F i

µν)
2 + ψ̄(iγµDµ −mq)ψ , (1-11)

with ψ̄ = ψ†γ0 being the anti-quark field. The fermionic part of Eq. (1-11) contains

the covariant Dirac operator M ≡ iγµDµ −mq with quark mass mq
†.

Eq. (1-11) exhibits the classical QCD Lagrangian. In order to quantize the

theory we will use the path integral formalism introduced by Feynman [21]. The

fundamental quantity in the path integral formalism is the classical action S, which

is explicitly given for QCD with one quark flavor as the space-time integral over the

Lagrangian density

S[ψ, ψ̄, A] =

∫

d4x

{

−1

4
(F i

µν)
2 + ψ̄Mψ

}

. (1-12)

The expectation value of a physical observable O is then formally given by the

following functional integral:

〈O〉 = 1

Z

∫

DADψDψ̄ O[ψ, ψ̄, A] eiS[ψ,ψ̄,A] , (1-13)

with the partition function Z

Z =

∫

DADψDψ̄ eiS[ψ,ψ̄,A] . (1-14)

One advantage of the path integral quantization is that it deals only with classical

fields and not with operators. However, in case of fermions the (classical) fields ψ

must be represented by anti-commuting variables. This is realized by the use of so

called Grassmann variables. The integral over such Grassmann valued numbers can

be defined in a sensible way and we adopt here the standard conventions (see for

instance [15]).

Formally we can perform the integral over the Grassmann valued fields ψ and ψ̄

analytically due to its Gaussian structure

∫

DψDψ̄ exp

{

i

∫

d4x ψ̄Mψ

}

∝ detM , (1-15)

†For simplicity we consider only one quark flavor. The generalization to Nf flavors of quarks is

straightforward.
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CHAPTER 1. THEORETICAL BASIS

leaving us to calculate the functional determinant of the operator M ‡. Nevertheless,

we can define an effective action

Seff [A] =

∫

d4x

{

−i log detM − 1

4
(F i

µν)
2

}

. (1-16)

in terms of which we can now express the expectation value of an operator O

〈O〉 = 1

Z

∫

DA O[A] eiSeff [A] . (1-17)

This is possible because due to Wick’s theorem for the contraction of fields one can

eliminate the time-ordered product of quark fields in the operator O by suitable

factors of M−1 which do no longer depend on the quark fields ψ̄, ψ.

For a numerical treatment of the functional integral in Eq. (1-17) it is useful

to analytically continue the time component of the 4-vectors to purely imaginary

values§. This rotation of the time coordinate x0 → −ix0 leads to a Euclidean 4-

vector product:

x2 = (x0)2 − |~x|2 → −(x0)2 − |~x|2 = −|xE|2 . (1-18)

It was shown by Osterwalder and Schrader [22] that under certain conditions one can

reconstruct the whole quantum field theory in Minkowski space from the Euclidean

field theory. The most important condition is the so called Osterwalder-Schrader

positivity or reflection positivity, which replaces Hilbert space positivity and the

spectral condition of the Minkowskian formulation [22].

In Euclidean space the action is mapped to its Euclidean version

S → iS ≡ −SE = −
∫

d4x

[

1

4
(F i

µν)
2 + ψ̄(γµDµ +mq)ψ

]

, (1-19)

where the Euclidean Dirac matrices γµ are hermitian and satisfy the anti-commutation

relation

{γµ, γν} = 2δµν . (1-20)

For the explicit representation see appendix A.1. Consequently the exponential

weight, e.g. in the partition function Z, can now be interpreted as a Boltzmann

factor, as the Euclidean action is real and bounded from below (if the functional

determinant detM is real)

ZE =

∫

Dψ̄DψDA e−SE . (1-21)

Since we will work almost solely in Euclidean space-time we will skip the subscript

E in the following and use, for convenience, t instead of x0.

‡One can show that the functional determinant is equivalent to the sum of vacuum diagrams.
§This is often called Wick rotation.
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1.2. LATTICE REGULARIZATION

1.2 Lattice regularization

In the following section we will describe how QCD as a quantum field theory can be

regularized in Euclidean space-time by means of a discrete space-time lattice. As a

regularization scheme it can be used equally well as e.g. dimensional regularization.

But it has the crucial advantage to allow for non-perturbative computations by

means of Monte Carlo methods.

To this end, we introduce a hyper-cubic space-time lattice with spacing a and

extension aL (a T ) in the spatial directions (time direction). The boundary con-

ditions can be chosen in different ways, and we will use periodic boundary con-

ditions throughout this work. Only for the quark fields in time direction we use

either periodic or anti-periodic boundary conditions. The parallel transporters

U(x, y) are SU(3)-valued and defined as in Eq. (1-6), where we use the notation

Ux,µ ≡ U(x, x + aµ̂). Note that Ux,−µ ≡ U(x, x − aµ̂) = U−1
x−aµ̂,µ. The set of all

parallel transporters on the lattice U ≡ {Ux,µ} we call a gauge field configuration.

The finite lattice spacing provides an ultra-violet cutoff for the momenta. In the

finite volume the allowed momenta are then given by

k = ±2πn

La
, n = 1, . . . , L/2 . (1-22)

On lattice we are now able to specify what is meant by the functional integral over

the gauge fields:
∫

DA ≡
∫

∏

x,µ

dUx,µ , (1-23)

where the product is over all lattice points x and directions µ. Unlike in the con-

tinuum, the lattice gauge fields are SU(3) matrices with elements that are bounded

in the range [0, 1]. Therefore, as proposed by Wilson, we use the invariant Haar

measure for the integration and adopt the standard definitions (cf. e.g. [18]).

The path integral of the Grassmann valued fermionic fields ψ̄ and ψ is discretized

similarly by
∫

Dψ̄Dψ ≡
∫

∏

x

dψ̄(x)dψ(x) . (1-24)

1.2.1 Wilson lattice action

The next step is to discretize the action. Recalling the definition of the plaquette

variable (1-8) the definition

SG[U ] =
∑

x

∑

1≤µ<ν

β

{

1− 1

3
Re Tr(U2(x;µ, ν)

}

(1-25)

9



CHAPTER 1. THEORETICAL BASIS

is locally gauge invariant, real and positive for β ≡ 6/g2 > 0. It is obvious from

Eq. (1-9) that it has the correct limit as a → 0. SG is called the Wilson plaquette

gauge action [10] and in the following we will call β the bare coupling constant.

We are left to discretize the fermionic part of the action. With the definitions

(1-3) and (1-4) of the forward and backward difference operators ∇µ and ∇∗
µ, re-

spectively, the lattice Dirac operator DW proposed by Wilson in Ref. [10] can be

read off from

ψ̄ DW[U ]ψ = a4
∑

x,µ

ψ̄(x)
1

2

[

γµ(∇µ +∇∗
µ)− ar∇∗

µ∇µ

]

ψ(x) . (1-26)

The so-called Wilson term −ar∇∗
µ∇µ has been introduced in order to cure the

problem that a naive discretization gives in the continuum limit rise to 2d=4 = 16

fermion excitations rather than one (the so-called fermion doubling problem). With

the Wilson term the extra 15 species pick up a mass proportional to 2r/a and

decouple in the limit a→ 0. The Wilson parameter r can be chosen as −1 ≤ r ≤ 1.

With a bare mass m0 the Wilson lattice action then reads

S[ψ, ψ̄, U ] = SG[U ] + ψ̄(DW[U ]−m0)ψ . (1-27)

However, while curing the fermion doubling problem, the Wilson term explicitly

breaks chiral symmetry at finite values of the lattice spacing, i.e. even the massless

Wilson-Dirac operator no longer anti-commutes with γ5. Although chiral symmetry

is expected to be recovered in the continuum, its breaking at finite values of a has

important consequences, among others:

• It introduces discretization errors of O(a). With a naive discretization the

lattice artifacts in the action appear only at O(a2).

• The quark mass renormalizes both additively and multiplicatively. Hence, it

is useful to define a subtracted bare quark mass parameter by

mq = m0 −mcrit , (1-28)

where mcrit is called the critical mass parameter. The value of mcrit needs

to be determined such that the chiral point is properly defined, for instance

by demanding that the lightest pseudo scalar state becomes massless at this

point.

Both of these two consequences will play an important rôle in this work.

We note in passing that usually in the simulations the hopping parameter repre-

sentation of the Wilson lattice action (1-27) is used. It is obtained from (1-27) by

re-scaling the fermionic fields as follows:

ψ →
√

2κ

a3/2
ψ , ψ̄ →

√
2κ

a3/2
ψ̄ , κ =

1

2am0 + 8r
, (1-29)

10



1.2. LATTICE REGULARIZATION

with the so called hopping parameter κ. To mcrit corresponds the critical hopping

parameter

κcrit =
1

2amcrit + 8r
, (1-30)

and the fermionic part of the action reads

S[ψ, ψ̄, U ] =
∑

x

{

ψ̄(x)ψ(x)− κψ̄(x)

4
∑

µ=1

[

Ux,µ(r + γµ)ψ(x+ aµ̂)

+ U †
x−aµ̂,µ(r − γµ)ψ(x− aµ̂)

]

}

≡
∑

x,y

ψ̄(x)Mxyψ(y) .

(1-31)

1.2.2 Remnant chiral symmetry on the lattice

If we consider massless continuum QCD with two quark flavors u ≡ ψαc,u and d ≡
ψαc,d, the Lagrangian obeys isospin symmetry, the symmetry of an SU(2) unitary

transformation mixing the u and d fields. But, since left- and right-handed quarks

do not couple, this Lagrangian is actually symmetric under the separate unitary

transformations
(

u

d

)

L

≡ 1− γ5

2

(

u

d

)

→ UL

(

u

d

)

L

,

(

u

d

)

R

≡ 1 + γ5

2

(

u

d

)

→ UR

(

u

d

)

R

. (1-32)

We can separate the U(1) and the SU(2) parts of these transformations: the sym-

metry of the classical Lagrangian is UV (1)×UA(1)× SUV (2)× SUA(2). The vector

part of this symmetry is a manifest symmetry of strong interactions, but the UA(1)

is broken by instanton contributions and the SUA(2) symmetry is spontaneously

broken. These two statements imply that the flavor singlet axial current

jµ5 = (ū d̄)γµγ5

(

u

d

)

(1-33)

is anomalous (Adler-Bell-Jackiw anomaly) and that the quark condensate acquires a

non-zero expectation value in the QCD vacuum. Due to Goldstone’s theorem we ex-

pect three massless particles associated with the spontaneously broken symmetries,

which are in nature realized as the pion triplet.

Of course, if the quarks are not exactly massless, the isotriplet axial currents are

no longer exactly conserved. Then, the quark mass terms give the pions masses of

the form (see e.g. Ref. [15])

m2
π =

M2

fπ
(mu +md) , (1-34)

11
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with a mass parameter M and fπ the pion decay constant with dimension of a mass.

The value of M has been estimated to be of the order of 400 MeV, the value of fπ
is 93 MeV [23]. To give the pions the observed 140 MeV [23] one therefore needs

(mu + md) ∼ 10 MeV, which is indeed a small, but important perturbation to the

massless case.

Chiral symmetry plays an important rôle in continuum QCD and it is therefore

desirable to preserve chiral symmetry also in lattice QCD at finite values of the

lattice spacing a. But, we have seen already in the discussion around Eq. (1-26)

that for the standard Wilson operator one has to live either with the doubling

problem or with explicitly broken chiral symmetry.

In fact, it was proven by Nielsen and Ninomiya [24, 25, 26, 27] that for a massless

lattice Dirac operator D it is not possible to achieve the following properties at the

same time:

1. D(x) is an essentially local operator (bounded by e−γ|x|).

2. The Fourier transform of D(x) fulfills D̃(p) = iγµpµ +O(ap2) for p≪ π/a.

3. D̃(p) is invertible for p 6= 0. (no massless doublers).

4. The lattice action is invariant under continuous chiral transformations, i.e.

γ5D +Dγ5 = 0.

In order to circumvent this theorem it was proposed by Ginsparg and Wilson [28] to

replace the property thatD anti-commutes with γ5 by the so-called Ginsparg-Wilson

relation:

γ5D +Dγ5 = aDγ5RD , (1-35)

where R is a local matrix that may have a nontrivial γ-matrix dependence but must

have a chirally non-invariant piece.

The Ginsparg-Wilson relation implies a continuous symmetry of the fermionic

lattice action, as was shown by Lüscher [29]. The infinitesimal variation correspond-

ing to this symmetry reads

δψ = γ5(1−
1

2
aD)ψ , δψ̄ = ψ̄(1− 1

2
aD)γ5 , (1-36)

which is a flavor singlet chiral transformation on the lattice. The flavor non-singlet

transformations can be defined similarly by including a group generator in Eq. (1-36).

An operator D fulfilling the Ginsparg-Wilson relation (1-35) is called a Ginsparg-

Wilson operator.

Since the flavor singlet chiral symmetry in QCD is anomalous in the presence

of gauge fields, it is interesting to see whether this anomaly is correctly reproduced

12



1.2. LATTICE REGULARIZATION

when the lattice Dirac operator fulfills the relation (1-35). In fact it was shown

in Ref. [29] that the Ward identities associated with the global flavor singlet chiral

transformations on the lattice have the correct anomaly. Moreover, the discussion

in Ref. [29] reveals that flavor non-singlet chiral rotations are exact symmetries of

the lattice theory. In addition the Atiyah-Singer index theorem [30] holds at finite

values of the lattice spacing [31] with the important consequence that the difference

of the number of positive chirality zero modes and negative chirality zero modes of

a Ginsparg-Wilson Dirac operator in an external color gauge field is equal to the

topological charge.

Furthermore, like in continuum QCD, the lattice chiral symmetry prohibits mix-

ing between operators with different chirality. The latter proves to be rather useful

in the course of renormalization, in particular in the calculation of matrix elements

of the weak interactions Hamiltonian needed for instance for the extraction of BK .

One particular solution of the Ginsparg-Wilson relation was found by Neuberger

[32, 33] and is given by the so called overlap operator. For Rxy = δxy/ρ the massless

operator reads

D(0)
ov =

ρ

a

[

1− A(A†A)−1/2
]

, A = ρ− aDW , (1-37)

where DW is the Wilson-Dirac operator (1-26) and 0 < ρ < 2 is a real parameter.

A bare mass mov can be added in the following way

Dov =

(

1−mov
a

2ρ

)

D(0)
ov +mov , (1-38)

where the somewhat un-usual form avoids O(a) lattice artifacts [34]. The overlap

operator was shown to be manifestly gauge covariant and it has no doublers. More-

over it was shown to converge to the expected classical continuum expression (up

to a finite normalization constant) and the requirement of locality is fulfilled with

a certain choice of the parameter ρ [35]. Note that an equivalent formulation is

provided by the domain wall approach [36, 37] (for a review see [38]).

However, from a feasibility point of view the overlap operator is compared to the

Wilson-Dirac operator computer time demanding. The reason for this is the fact

that for each application of Dov an evaluation of 1/
√
A†A is needed. This is usually

done with a polynomial in the operator A†A and needs therefore a certain number of

applications of the latter. This number depends naturally on the parameters under

investigation and might very well be of O(100).

It is also part of this work to compare the computational costs for two particular

lattice Dirac operators – one of those being the overlap operator.

13
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1.2.3 Symanzik effective action

We have explained in the last paragraphs that the Wilson formulation of lattice

QCD breaks chiral symmetry and shows discretization errors of O(a), which is not

a problem of principle if one is able to simulate at small enough values of the lattice

spacing a. Unfortunately, nowadays lattice QCD simulations are still restricted to

rather large values of a and it is therefore worthwhile to improve the scaling with

the lattice spacing towards the continuum limit.

We will present here two ways to achieve on-shell O(a) improvement, both of

them are based on the effective action introduced by Symanzik [12, 13, 14].

Close to the continuum the lattice theory as has been defined in the previous

paragraphs can be described by a local effective action

Seff = S0 + aS1 + a2S2 + . . . (1-39)

While the leading term, S0, is just the continuum action¶, the correction terms Sk
are to be interpreted as operator insertions in the continuum theory and are given

by

Sk =

∫

d4xLk(x) . (1-40)

The Lagrangians Lk have mass dimension 4 + k and they are linear combinations

of local composite fields. The list of possible fields is constraint by gauge and flavor

symmetry and the exact discrete symmetries of the lattice action, including space-

time lattice symmetries and charge conjugation. Moreover partial integration can

be used to further reduce the number of possible terms.

Clearly the action is not the only origin for cut-off effects, also the local com-

posite fields, from which observables of interest are built, will be a source of those.

Consider a local gauge invariant composite field φ(x) on the lattice, constructed out

of gluon and fermion fields. For simplicity we assume that it does not mix with

other operators under renormalization. The effective field

φeff(x) = φ0(x) + aφ1(x) + a2φ2(x) + . . . (1-41)

represents in the effective theory the renormalized lattice field Zφφ(x) with an ap-

propriately chosen renormalization factor Zφ. The fields φk that appear in the

representation (1-41) are linear combinations of local fields with appropriate dimen-

sion and symmetry properties. To leading order in the lattice spacing a connected

lattice n-point function with all points x1, . . . , xn kept at non zero distance from

¶The continuum theory also has to be regularized to make the expressions meaningful. One

could think e.g. of a regularization with a much smaller lattice spacing ã≪ a.
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each other is given by

Gn(x1, . . . , xn) = 〈φ0(x1) . . . φ0(xn)〉cont

− a
∫

d4y 〈φ0(x1) . . . φ0(xn)L1(y)〉cont

+ a

n
∑

k=1

〈φ0(x1) . . . φ1(xk) . . . φ0(xn)〉cont +O(a2) .

(1-42)

All the expectation values on the right hand side of Eq. (1-42) have to be evaluated

in the continuum theory with action S0, which we indicate by the superscript cont. In

the second term, which is the contribution of the O(a) term in the effective action,

the integral over y in general diverges at the points y = xk. However, each such

contact term can be described as the effect of a local field placed at xk. This local

field must have the global symmetry quantum numbers of φ0(xk)L(y) and therefore

the possible fields are known from φeff . Hence, the contact terms lead just to a

redefinition of the field φ1(x) and the renormalization factor.

In the following we will assume that the lattice action is the Wilson action. For

this case in Ref. [39] the O(a) effective Lagrangian L1(x) was derived to be a linear

combination of the following fields

O1 = ψ̄σµνFµνψ ,

O2 = ψ̄DµDµψ + ψ̄
←−
Dµ
←−
Dµψ ,

O3 = mTr{FµνFµν}
O4 = m{ψ̄γµDµψ − ψ̄

←−
Dµγµψ}

O5 = m2ψ̄ψ ,

(1-43)

where m is the quark mass and Fµν the field-strength tensor and Dµ is here the

gauge covariant partial derivative, see Ref. [39]. We do not consider the fields O2

and O4, because they can be eliminated by relations derived from the classical field

equations. Note that in order to apply the field equations to simplify the effective

Lagrangian one has to carefully treat some contact terms. However, these contact

terms can be shown to amount only for a redefinition of the fields [39], see above.

Thus, aiming to improve the lattice action by adding a suitable counter-term of

O(a) to the Wilson action, one has to add a counter-term of the form

a5
∑

x

[

c1Ô1(x) + c3Ô3(x) + c5Ô5(x)
]

, (1-44)

where Ôk is some lattice representation of the field Ok. Using the leftover ambiguity

of O(a2) we may represent the fields TrFµνFµν and ψ̄ψ by the Wilson plaquette

field and the local scalar density, respectively. Since these two already appear in
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the Wilson action the counter-terms proportional to Ô3 and Ô5 amount to a renor-

malization of the bare coupling and the bare mass. Let us remark here that the

latter prescription to absorb the counter-terms of O3 and O5 leads to the additional

complication of a mass dependent renormalization scheme, which is usually not fa-

vorable. One can cope with this complication [39], but we will not go into these

details since we are not going to use this improvement programme further.

Therefore, for the on-shell O(a) improved action one needs a counter-term

δS[U, ψ̄, ψ] = a5
∑

x

cswψ̄(x)
i

4
σµνF̂µν(x)ψ(x) , (1-45)

where F̂µν is a lattice representation of the field strength tensor Fµν and csw is a

tunable coefficient‖. The coefficient csw needs to be determined in a suitable way in

order to obtain an order a improved theory on the lattice.

Depending on the possible fields φ1 it might then also be necessary to determine

further improvement coefficients for the field under consideration. One example is

the isovector axial current

Aαµ(x) = ψ̄(x)γµγ5
1

2
ταψ(x) ,

that needs one improvement coefficient cA.

Finally, we want to mention that, since O1 transforms like a mass term under

chiral rotations [41] and therefore explicitly breaks chiral symmetry, it cannot appear

if the operator obeys the Ginsparg-Wilson relation: the reason for this is that in

the chiral limit there is exact chiral symmetry on the lattice and thus all correction

terms in the action not proportional to some powers of the mass must be absent

in the effective action [34]. Moreover, with a properly introduced mass term as in

Eq. (1-38) terms proportional to am are forbidden due to the combined symmetry

of [m→ −m] and

ψ → γ5(1− aD)ψ , ψ̄ → −ψ̄γ5 .

Thus a lattice regularization with exact chiral symmetry shows no O(a) lattice ar-

tifacts. This, of course, provides an additional advantage of chirally symmetric

lattice formulations compared to O(a) improvement by means of the Symanzik im-

provement programme: in the latter a (potentially large) number of improvement

coefficients has to be tuned, while there is still no control about higher order lattice

artifacts.

1.2.4 Twisted mass regularization

Having introduced in the last subsection the concept of Symanzik’s effective action

and one way to obtain on-shell O(a) improvement – that amounts in determining

‖The improved action was first obtained by Sheikholeslami and Wohlert [40].
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improvement coefficients and adding of counter-terms to the lattice action – we will

in this subsection follow a different approach, recently realized in Ref. [42], where

only one parameter needs to be tuned in order to obtain O(a) improved results.

To this end we introduce the so called twisted mass regularization of lattice QCD

(tmQCD) [43, 44]. The twisted mass fermion lattice action for Nf = 2 flavors of

mass degenerate quarks reads

Stm = a4
∑

x

χ̄(x)
[

DW +m0 + iµγ5τ3
]

χ(x) = a4
∑

x

χ̄(x)Dtmχ(x) , (1-46)

where µ is refered to as the twisted mass parameter and τ3 is the third Pauli matrix

acting in flavor space. The twisted mass Dirac operator Dtm is given by

Dtm = DW +m0 + iµγ5τ3 . (1-47)

We denote the fermion fields now by χ and call them the twisted basis for a reason

that will become clear later. In Ref. [43] this formulation was introduced to avoid

un-physically small eigenvalues of the lattice Dirac operator, since the twisted mass

serves as an infrared cutoff for the eigenvalues of the operator Dtm, and it was shown

that this particular regularization is equivalent to the standard Wilson regularization

up to cut-off effects [43].

In fact the continuum limit of the action (1-46) reads

Scont
tm =

∫

d4x χ̄(x)
[

γµDµ +mq + iµγ5τ3
]

χ(x) , (1-48)

which is form-invariant under axial transformations

χ → eiωγ5τ3/2χ , χ̄ → χ̄ eiωγ5τ3/2 . (1-49)

The form (1-48) can be obtained from the standard continuum fermion action by

rotating the fermion fields ψ with twist angle ω according to

ψ → χ = eiωγ5τ3/2ψ , ψ̄ → χ̄ = ψ̄ eiωγ5τ3/2 . (1-50)

Note that the axial transformations (1-50) are non-anomalous: they leave the fermion

measure invariant since Tr τ3 = 0. The latter rotations just transform the mass pa-

rameters according to

mq → mq cosω + µ sinω ,

µ → −mq sinω + µ cosω ,
(1-51)

and the mass term in Eq. (1-48) can also be written as m exp(−iωγ5τ3) with m2 =

m2
q + µ2. One form of particular interest – which will become clear later – is the

special case with mq = 0

Scont
mtm =

∫

d4x χ̄(x)
[

γµDµ + iµγ5τ3
]

χ(x) , (1-52)
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which is related to the standard action by an axial transformation with angle ω =

π/2. It is refered to as the action with maximal twist. The corresponding lattice

action has the form

Smtm = a4
∑

x

χ̄(x)
[

DW +mcrit + iµγ5τ3
]

χ(x) , (1-53)

since the Wilson term −ar∇∗
µ∇µ still breaks chiral symmetry explicitly and there-

fore additive renormalization of m0 is needed. We refer to this particular lattice

regularization as maximally twisted mass lattice QCD (mtmQCD).

Since the transition from standard to twisted form of the action corresponds to

a change of fermionic variables ψ → χ, the χ basis is called twisted basis and the ψ

basis is called physical basis. The lattice Wilson twisted mass action (1-46) in the

twisted basis can be translated to the physical basis again by an axial transformation

of the form of Eq. (1-49) and it reads

Sph
tm = a4

∑

x

ψ̄(x)

[

1

2

∑

µ

γµ(∇∗
µ +∇µ)

+

(

−ra
2

∑

µ

∇∗
µ∇µ +mcrit

)

e−iωγ5τ3 +mq

]

ψ(x) .

(1-54)

In this form the fermion mass term is real and, since the Wilson term is not left

invariant under the axial rotation, now the Wilson term is rotated. We remark

that the tmQCD lattice action can easily be translated to the hopping parameter

representation by re-scaling according to Eq. (1-29), as it was done for the Wilson

lattice action with Eq. (1-31).

Finally, as in the continuum the tmQCD and the standard QCD are exactly

related by the transformation (1-50), they share all the symmetries. But in the

twisted basis the symmetry transformations can have a different form than usual.

For instance the usual parity operation

P :























U0(~x, t) → U0(−~x, t)
Uk(~x, t) → U †

k(~x− ak̂, t)
χ(~x, t) → γ0χ(−~x, t)
χ̄(~x, t) → χ̄(−~x, t)γ0

(1-55)

is no longer a symmetry of the continuum action in the twisted basis. But if P is

replaced by the following modified parity operation P̃ [44], the symmetry is recov-

ered:

P̃ :

{

χ(~x, t) → γ0 exp(iωγ5τ3)χ(−~x, t)
χ̄(~x, t) → χ̄(−~x, t) exp(iωγ5τ3)γ0 ,

(1-56)
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where ω is defined by Eq. (1-51) and the gauge fields transform under P̃ as for P.

However, for the lattice action in the twisted basis P is only a symmetry if it is

combined with [µ → −µ] or a flavor exchange [44]. The former combination we

will denote with Pµ and the latter with PF . Moreover, on the lattice the isospin

symmetry is explicitly broken in the twisted mass formulation even in the mass

degenerate case.

O(a) improvement at maximal twist

The mtmQCD formulation is of particular interest, because one can show that terms

proportional to O(a) are absent in the Symanzik expansion of certain physical ob-

servables, as was proven in Ref. [42]. In order to see this we will follow in this work

a different approach than originally used in Ref. [42]. It is similar to a proof in the

physical basis presented in Ref. [45] and based on the following observations:

First, it is important to notice that all the expectation values in the Symanzik

expansion of an operator O on the right hand side of Eq. (1-42) are to be taken in

the continuum theory with action S0. This implies that any operator not obeying

the symmetries of S0 must have zero expectation value and therefore be absent in

the expansion. The symmetry we will use is the just introduced modified parity

operation P̃.

Second, all the operators in the expansion of the operator O must share all its

lattice symmetries, otherwise they must be absent. The particular symmetry of the

mtmQCD lattice action is P̃ ×Dm×Dd. The transformation according to Dm×Dd
is multiplying each term with (−1)dm+dd . dm represents the mass dimension of the

term and dd its normal dimension.

And last, the fields contributing to L1 are restricted to those that obey the

symmetries of the lattice action, as for instance Pµ and PF .

By using these arguments we will now show that in the expansion of an operator

O even under P̃, which means O goes exactly into itself under a P̃ transformation,

terms linear in a are absent. To this end we first have to accumulate the action

counter-terms needed for L1: in addition to the fields listed in Eq. (1-43) one finds

among others the following:

O6 = µ2χ̄χ ,

O7 = µTr{FµνFµν} ,
O8 = imµχ̄γ5τ3χ ,

O9 = mµχ̄χ ,

O10 = µTr{FµνF̃µν} .

(1-57)

We listed some more fields than are actually important in order to show how they

can be removed by the help of the symmetries Pµ and PF . For instance O10 is parity
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odd, but not affected by a flavor exchange and is therefore absent in L1(x) due to

PF . O9 and O7 are also absent, because they are odd under Pµ. At maximal twist

m is identical zero and hence we are left with O6 in addition to O1 (with ψ replaced

by χ), where we again used the classical equations of motion to reduce the number

of possible fields.

Consider now an operator O even under P̃ . In the second term of its Symanzik

expansion (1-42), containing an insertion of L1, we have to evaluate the expectation

value of the P̃ even operator O and the fields Oi listed above: 〈OOi〉cont. O1 and

O6 are odd under P̃, O is even and thus these terms are absent in the expansion.

Since this means that lattice artifacts originating from the lattice action are

absent we can conclude already that quantities extracted from the transfer matrix,

like for instance hadron masses, are not affected by O(a) cut-off effects at maximal

twist.

In order to show that also the third term on the right hand side of Eq. (1-42)

is absent for P̃ even operators we use the aforementioned symmetry P̃ × Dm ×Dd.
The operator O is even under P̃ and must therefore be even under Dm × Dd. As

the third term in Eq. (1-42) is multiplied with one power of a it must be odd under

Dm ×Dd and therefore odd under P̃. Since O is even under P̃ also this term must

be absent in the expansion.

This is a remarkable result, because with tmQCD at maximal twist it is possible

to avoid un-physically small eigenvalues and to obtain O(a) improved expectation

values needing no improvement coefficients∗∗. Quantities even in P̃ are for instance

hadron masses and on-shell matrix elements at zero three-momentum. More exam-

ples can be found in Ref. [42].

Overlap versus mtmQCD

We will close this section with a short comparison of the overlap lattice approach

to the twisted mass lattice formulation at maximal twist. Both formulations allow

to extract O(a) improved results and the two corresponding lattice Dirac operators

are protected against un-physically small eigenvalues [43]. Of course, one has to

keep in mind that for the overlap formulation O(a) improvement comes automatic

while for mtmQCD the tuning of the twist angle is required. The first difference of

principle is the fact that the overlap operator exhibits exact chiral symmetry on the

lattice, while for mtmQCD chiral properties are only improved, since the symmetry

is still explicitly broken, even if the effects become visible only at O(a2). But the

price for exact chiral symmetry on the lattice is that the cost for one application of

∗∗One can show [42] that O(a) improvement for parity even operators can be achieved also for the

Wilson formulation, when one averages over independent simulations with positive and negative

value of the Wilson parameter r or with positive and negative value of mq.
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the overlap Dirac operator is significantly larger than the cost for the application of

the twisted mass operator.

We note in passing that also with mtmQCD it is possible to avoid unwanted

mixing of operators with opposite chirality, although chiral symmetry is broken.

For details we refer to Ref. [46].

1.3 Observables

In the preceding sections we have discussed several formulations of lattice QCD and

in particular, how one can obtain O(a) improvement. So far we did not yet explain

how physical quantities like masses and decay constants can be extracted in lattice

simulations, which is the content of the following section. Since we will work with

three different formulations, the pure Wilson, the tmQCD and the overlap formula-

tion, we have to consider in this section all of the three formulations. The composite

fields and correlation functions for the Wilson formulation can equivalently be used

in the tmQCD formulation, they only differ by the fact that for tmQCD we work in

the twisted basis, where all the fermion fields are rotated. There are, however, some

specialties in the case of maximal twist. We will discuss the three formulations in

separate subsections.

Before coming to the two point functions needed in this work it is useful to discuss

the relation between Euclidean and Minkowski quantities. Consider the following

Euclidean time ordered two point function

〈0|T [O1(x)O2(0)]|0〉 , (1-58)

with operators O1 and O2, representing the amplitude for the creation of a state

with quantum numbers of operator O2 at space-time point 0, its propagation to

space-time point x = (~x, t) and finally its annihilation by O1. By integrating over

space-like coordinates we project to zero momentum states. If we then insert a

complete set of energy eigenstates we obtain

〈0|
∫

d3x O1(x)O2(0)|0〉 =
∑

n

〈0|O1|n〉〈n|O2|0〉
2En

e−Ent . (1-59)

If there is a stable single-particle state |n〉 with the corresponding quantum numbers,

then its Energy En is equal to the mass Mn of the particle, since we have projected to

zero momentum. In general there might be several such states, but asymptotically

for large enough values of t the correlation function will be dominated by the state

with the lowest mass, e.g. M1. Thus one gets

〈0|
∫

d3x O1(x)O2(0)|0〉 t → ∞−−−−−→
〈0|O1|1〉〈1|O2|0〉

2M1
e−M1t , (1-60)
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and the mass of the lightest particle can be extracted from the exponential fall-off

of the correlation function at large Euclidean times without analytical continuation

to Minkowski space. This simple connection also holds for matrix elements. These

arguments, however, break down as soon as the sum over states is not just over stable

single-particle states. For instance the ρ meson mass can no longer be extracted by

simply measuring the ground state energy (cf. [47, 48]).

1.3.1 Wilson formulation

Hadron and quark masses are – in the simplest cases – extracted from two point

correlation functions of suitable composite fields. The most common bilinears are

the scalar and the pseudo scalar densities, which read in the physical basis ψ:

S0(x) = ψ̄(x)ψ(x) , P α(x) = ψ̄(x)γ5
τα
2
ψ(x) , (1-61)

and the vector and the axial currents

Aαµ(x) = ψ̄(x)γµγ5
τα
2
ψ(x) ,

V α
µ (x) = ψ̄(x)γµ

τα
2
ψ(x) .

(1-62)

Here τα, α = 1, 2, 3 are the usual Pauli matrices acting in isospin space. Moreover

the local bilinear with tensor structure is of interest

T αk (x) = ψ̄(x)γ0γk
τα
2
ψ(x) . (1-63)

All local interpolating field operators for mesons in a Wilson like theory can be

found in table 1.1. In practice a general two point correlator with three-momentum

p can be re-written in terms of the quark propagators as follows

CAB(p, t) =
∑

x

e−ipx〈ψ̄2(x)ΓBψ1(x)ψ̄1(0)ΓAψ2(0)〉

= −
∑

x

e−ipx〈Tr (S2(0, x)ΓBS1(x, 0)ΓA)〉 .
(1-64)

Here ΓA,B represent the Dirac structure, the quark propagators are denoted with

S1,2 and the trace is taken over spin and color indices. The sum over the space-like

points x on a given time slice projects to zero momentum states. In case the quark

propagators fulfill the hermiticity property S(0, x) = γ5S(x, 0)†γ5 the computation

of both S(0, x) and S(x, 0) can be avoided in favor of computing only one of the

two.

As explained at the beginning of this section the meson masses can then be

extracted from the exponential fall-off of suitable correlation functions at large Eu-

clidean times. In terms of the local interpolating fields introduced above for instance
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State IG(JPC) Operator

Scalar 1−(0++) ū(x)d(x)

1−(0++) ū(x)γ0d(x)

Pseudo-scalar 1−(0−+) ū(x)γ5d(x)

1−(0−+) ū(x)γ5γ0d(x)

Vector 1+(1−−) ū(x)γid(x)

1+(1−−) ū(x)γ0γid(x)

Axial 1+(1++) ū(x)γ5γid(x)

Tensor 1+(1+−) ū(x)γiγjd(x)

Table 1.1: The local interpolating field operators for light mesons in a Wilson like theory.

The quark fields corresponding to the two quark flavors up and down are labeled with u and

d.

the pseudo scalar mass mPS and the vector meson mass mV can be extracted from

the following two point correlation functions:

Cα
PP (t) = a3

∑

x

〈P α(x)P α(0)〉 α = 1, 2 , (1-65)

Cα
V V (t) =

a3

3

3
∑

k=1

∑

x

〈V α
k (x)V α

k (0)〉 α = 1, 2 , (1-66)

Cα
TT (t) =

a3

3

3
∑

k=1

∑

x

〈T αk (x)T αk (0)〉 α = 1, 2 . (1-67)

In a similar way the correlation functions Cα
AA(t), Cα

AP (t) and others can be defined.

Then, due to periodic boundary conditions, for example the correlation function

Cα
PP is expected to behave for large Euclidean times t like f(t) = A cosh(mPS(t −

T/2)), where T is the lattice time extent, mPS is the corresponding mass and A

the amplitude. By fitting the functional form f(t) to the data in a certain window

tmin ≤ t ≤ tmax, where all the excited states have vanished, the values for the masses

are actually extracted. Moreover, the amplitude A gives an estimate for the matrix

element 〈0|P α(0)|π〉, where we denote with |π〉 the pseudo scalar state with the

lightest mass.

Besides the meson masses, the quark mass and the pseudo scalar decay constant

fPS ≡ m−1
PS〈0|Aα0 (0)|π〉 (1-68)

are quantities of interest. For calculating fPS the following two methods are possible.

The first one is to obtain the amplitude 〈0|Aα0 (0)|π〉 from the asymptotic behavior

of the correlation function Cα
AA(t) while the pseudo scalar mass is extracted from

Cα
PP (t). The second method [49] is to obtain the ratio (we skip the flavor index α
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in the following)

rAP =
〈0|A0(0)|π〉
〈0|P (0)|π〉 (1-69)

from the asymptotic behavior of

CAP (t)

CPP (t)
= rAP tanh[mPS(T/2− t)] , (1-70)

where again mPS is extracted from CPP (t). The value for fPS can then be obtained

from

fPS = m−1
PS rAP 〈0|P (0)|π〉 . (1-71)

Clearly, both methods agree asymptotically for large Euclidean times. With one

of these definitions for fPS also the bare current quark mass can be defined by the

PCAC relation

mPCAC =
fPS

2〈0|P (0)|π〉m
2
PS . (1-72)

Note that this quantity – in contrast to the masses extracted from the exponential

fall-off – requires multiplicative renormalization, which is also the case for fPS de-

termined in the way explained above. In the pure Wilson case mPCAC serves as an

estimate for the bare quark mass.

1.3.2 tmQCD formulation

Introducing a twisted mass term in the Wilson-Dirac operator is equivalent to trans-

forming the fermion fields ψ → χ according to Eq. (1-50). Therefore also the com-

posite fields have to be transformed. The result for the axial and vector currents is

the following:

A′α
µ ≡ χ̄γµγ5

τα
2
χ =

{

Aαµ cos(ω) + ǫ3αβ V β
µ sin(ω) (α = 1, 2) ,

A3
µ (α = 3) ,

(1-73)

V ′α
µ ≡ χ̄γµ

τα
2
χ =

{

V α
µ cos(ω) + ǫ3αβAβµ sin(ω) (α = 1, 2) ,

V 3
µ (α = 3) ,

(1-74)

whereas the rotated scalar and the pseudo scalar densities are given by:

P ′α ≡ χ̄γ5
τα
2
χ =

{

P α (α = 1, 2) ,

P 3 cos(ω) + i1
2
S0 sin(ω) (α = 3) ,

(1-75)

S ′0 ≡ χ̄χ = S0 cos(ω) + 2iP 3 sin(ω) . (1-76)

In the special case of ω = π/2 the vector and the axial currents with α = 1, 2

transform into each other, while the pseudo scalar densities (α = 1, 2) do not rotate
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with ω. Therefore the charged pseudo scalar (“pion”) mass can be extracted for all

values of ω from the pseudo scalar density also in the twisted basis. In the following

we will skip the ′ on the quantities in the twisted basis again, since we will always

work in the twisted basis if tmQCD is concerned.

The PCAC and PCVC relations assume in the twisted basis the following form

[44]:

∂µA
α
µ = 2m0P

α + iµδ3αS0 ,

∂µV
α
µ = −2µǫ3αβP β .

(1-77)

While in the pure Wilson-Dirac operator there is only one mass term, which is

aligned to the Wilson term (proportional to the unit matrix in flavor space), in the

twisted mass operator (1-54) there is an additional mass term in the three-direction

of flavor space, which is dis-aligned to the Wilson term. Therefore, at general values

of the twist angle the quark mass estimate has to contain both of them, µ and mq

m =
√

(Zmq
mq)2 + (Zµµ)2 . (1-78)

Of course, the twisted mass lattice action can be studied in the full parame-

ter space (µ,mq), but automatic O(a) improvement is only realized at full twist

corresponding to mq = 0. A sensible definition for an estimate of mq is given by

mPCAC
χ =

〈∇∗
µχ̄(x)γµγ5

τ±

2
χ(x)χ̄(y) τ

±

2
γ5χ(y)〉

2〈χ̄(x) τ
±

2
γ5χ(x)χ̄(y) τ

±

2
γ5χ(y)〉

, (1-79)

where we introduced τ± = τ1 ± iτ2. Comparing to Eqs. (1-73,1-74,1-75) it is clear

that mPCAC
χ is identical to mPCAC for ω = 0. Moreover, at the special value of

ω = π/2, mPCAC
χ is zero due to the exact vector symmetry in the lattice theory, and

the quark mass is purely given by the twisted mass parameter µ, as it should be.

Thus, mPCAC
χ is a quantity that can be used to determine the parameters at which

ω = π/2.

In the twisted basis we can also define a quantity fPS
χ , given by Eq. (1-68), but

now in the twisted basis. We denote with the subscript χ that this is a quantity

extracted in the twisted basis, and in fact it does not correspond to the physical

pseudo scalar decay constant. A further estimate estimate for mq in the twisted

basis is then given by

mPCAC
χ =

fPS
χ

2〈0|P (0)|π〉m
2
PS , (1-80)

representing again the quark mass term aligned to the Wilson term.

25



CHAPTER 1. THEORETICAL BASIS

Pseudo scalar decay constant at maximal twist

Of course, given the relations of the composite fields (1-73) connecting the twisted

basis χ to the basis ψ, the value for fPS can be extracted from fPS
χ . But for the

special choice ω = π/2 this does not work (see above) and there is another possibility

to extract a value for fPS even without the need of a renormalization factor (cf.

[50, 51, 52]).

Of particular interest in this context is the PCVC relation, which takes in the

twisted basis the following form (1-77):

∂µṼ
α
µ = −2µǫ3αβP β , (1-81)

which holds exactly when the point split vector current Ṽ as defined in Ref. [44] is

used. From this follows that the vector current is protected against renormalization

– in analogy to Ginsparg-Wilson fermions, which means the renormalization factor

ZṼ = 1. Therefore, Eq. (1-81) implies that ZP = Z−1
µ , where ZP is the renor-

malization factor of the pseudo scalar density and Zµ the one for the twisted mass

parameter µ.

Fixing the flavor index to α = 1 we now again start with the standard definition

for the pseudo scalar decay constant in the physical basis Eq. (1-68)

〈0|A1
0(0)|π〉 = fPSmPS . (1-82)

In the twisted basis at maximal twist the rôle of the axial and vector current is just

interchanged, and therefore we can write in the twisted basis

∂µ〈0|V 2
µ (0)|π〉 = fPSm

2
PS . (1-83)

Using then the vector Ward identity (1-81), we can finally relate the divergence of

the vector current to the pseudo scalar density and obtain

fPSm
2
PS = ∂µ〈0|V 2

µ (0)|π〉 = 2µ 〈0|P 1(0)|π〉 . (1-84)

Thus, by fitting the pseudo scalar correlation function for large time separations, we

can obtain mPS and the amplitude |〈0|P 1(0)|π〉|2/mPS from which we then compute

the desired matrix element |〈0|P 1(0)|π〉|. Hence, we have all necessary ingredients

to determine fPS from Eq. (1-84), without the need of any renormalization factor.

1.3.3 Overlap formulation

As we have discussed before the overlap formulation obeys exact chiral symmetry on

the lattice and the theory isO(a) improved, as long as cut-off effects originating from

the action are considered. We have seen that besides the action also the operators
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are possible origins of cut-off effects. For the overlap formulation O(a) improved

bilinears with a Dirac structure Γ can be constructed as follows (ā = a/ρ):

OΓ = ψ̄qΓ

(

1− āD
(0)
ov

2

)

ψq′ =
1

1− āmq′

2

(

ψqΓψq′
)

, (1-85)

where ψq and ψq′ represent two different quark flavors q and q′ with masses mq

and mq′ , respectively. The pseudo scalar meson mass is then extracted from the

exponential fall-off at large Euclidean times of

Cov
PP (t) = a3

∑

x

〈P †(x)P (0)〉 , (1-86)

where the pseudo scalar density now is given by

P (x) = ψ̄q(x)γ5

[(

1− ā

2
D(0)

ov

)

ψq′
]

(x) . (1-87)

In order to remove contributions of topological zero modes (which are finite volume

effects, cf. [53, 54, 55, 56, 57, 58]) the same quantity can be extracted from

Cov
PP−SS(t) = a3

∑

x

〈P †(x)P (0)− S†(x)S(0)〉 , (1-88)

where S can be defined via Eq. (1-85) as follows

S(x) = ψ̄q(x)
[(

1− ā

2
D(0)

ov

)

ψq′
]

(x) . (1-89)

While Cov
PP−SS has the advantage that contributions from topological zero modes

are canceled, it has the drawback that the scalar meson appears as an excited state

and can affect the extraction of the ground state mass for large quark masses. The

vector meson mass mV is obtained with the overlap operator from

Cov
V V =

a3

3

3
∑

k=1

∑

x

〈V †
k (x)Vk(0)〉 , (1-90)

where the vector current is defined to be

Vµ(x) = ψ̄q(x)γµ

[(

1− ā

2
D(0)

ov

)

ψq′
]

(x) . (1-91)

For later purposes we define the axial vector current in the overlap formulation

Aµ(x) = ψ̄q(x)γµγ5

[(

1− ā

2
D(0)

ov

)

ψq′
]

(x) . (1-92)

The extraction of the bare quark mass and the pseudo scalar decay constant

from the Ward identity in case of overlap fermions is identical to the one described
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here for Wilson fermions. Only the bilinears have to be replaced by the suitable

counterparts as given in Eqs. (1-87) and (1-92).

We remark here that with overlap fermions the value for fPS can also be obtained

in the same way as for twisted mass fermions by using the PCAC relation. In fact

fPS can be computed from

f ov
PS =

2mov

m2
PS

|〈0|P (0)|π〉| , (1-93)

where as in the tmQCD case no renormalization constant is needed. The quark

mass mov is the quark mass parameter in the overlap operator (1-38).

1.3.4 Setting the scale

In lattice calculations, we need to fix one dimension-full quantity in order to set

the overall scale and to translate lattice units into physical units. This can be done

by using a hadronic scale r0, which is introduced by the force F (r) between static

quarks at intermediate distance r [59].

The hadronic length scale r0 defined by the implicit equation

r2F (r)|r=r(c) = c , r0 = r(1.65) (1-94)

has turned out to be a good choice to set the scale in lattice QCD calculations: it can

be computed on the lattice with high precision, both statistically and systematically,

and r0 is known to have a value of about 0.5 fm in QCD.

The force can be computed from the static quark potential that in turn can

be determined on the lattice from Wilson loops, which are r × t loops of gauge

links. Wilson loops are defined – similar to the plaquette variable – as the traces of

products of parallel transports around a closed loop. This is, as discussed before, a

gauge invariant object due to cyclic invariance in the trace. They represent a static

quark/anti-quark pair separated with distance r in space and propagating in time

the distance t. In order to improve the overlap with the ground state usually several

levels of APE smearing [60] are applied to the space like gauge links.

Following the variational approach of Ref. [61] one gets a correlation matrix

Wij(r, t) with i, j representing the smearing levels applied at the two space like

gauge link products. The correlation matrix can be used to solve the generalized

eigenvalue problem

Wij(r, t)vj(r) = λ(r, t0, t)Wij(r.t0)vj(r) . (1-95)

The eigenvector of the largest eigenvalue can be used to project Wij on the ground

state and the ground state energy can then be obtained form the exponential fall-off
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of the latter at large enough values of t, leading to an estimate of the potential V (r).

Equivalently, the generalized eigenvalue can be used as an estimate for the ground

state energy.

From the potential V (r) the force can be computed by numerical differentiation,

which in general reads

F (r′) = [V (r′)− V (r′ − a)] /a , (1-96)

at a certain distance r′. We decided to use a distance r′ = rI for which the lattice

force does not deviate from the tree-level continuum value [59]

F (rI) =
4

3

g2

4πr2
I

+O(g4) . (1-97)

The value of r0/a can then be determined by interpolating the force to the value of

r/a where Eq. (1-94) is fulfilled. A second possibility is to fit

V (r) = V0 + σr + α
1

r

to the data and determine the force from the best fit function. σ is the so called

string tension and α parameterizes the Coulomb like part proportional to the gauge

coupling. The final results, however, should agree within the errors for both meth-

ods.

The time like gauge links represent a static propagator of the static quarks that

can be derived from an effective static action. Here the naive choice is the Eichten-

Hill action [62], but one can also use static actions that show an improved signal

to noise ratio [63, 64, 65, 66]. The improved actions formally correspond to actions

with APE or HYP [67] smeared time like gauge links or a differently discretized time

derivative. The APE and in particular the HYP action lead to improved statistical

and systematical precision and therefore to a better estimate for r0 in lattice units

[63, 68, 69].

Our experience is that using a HYP static action is superior to using a APE

static action, which is then superior to the Eichten-Hill static action. This concerns

in particular the signal to noise ratio at large distances, where it is only with a

improved static action possible to determine a value for the force. This becomes

important close to the continuum and if one wants to use the potential to investigate

for instance string breaking [69, 70]. We remark that changing the static action is

equivalent to a different choice of the operator. Therefore, the different lattice

estimates for r0/a deviate from each-other by lattice artifacts, while the continuum

extrapolated value should of course agree.
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1.4 Lattice simulations

In this section we will shortly discuss some general principles for constructing algo-

rithms used in lattice simulations.

In order to compute the partition function (1-21) or an expectation value of an

operator O in principle one has to solve a high dimensional integral over the gauge

fields and the Grassmann valued fermionic fields. However, most of the contribu-

tions to the integral have only low weight and therefore stochastic integration with

importance sampling is an effective method to evaluate such integrals.

Stochastic integration with importance sampling preferentially chooses such con-

figurations that have a strong weight. At the same time it is assured that the sample

average estimates the ensemble average. This means that the sample is representa-

tive for the ensemble. In particular, such a stochastic integration can be performed

by means of Markov chains:

Markov chain

Consider a stochastic process in which a finite set of configurations Uτ1 , Uτ2 , . . . is

generated sequentially according to some transition probability Pij ≡ P (Ui → Uj).

The state of the system at any given simulation time τi will be a multi-dimensional

random variable, whose distribution depends only on the preceding state, if Pij
depends only on the state Ui. A set of configurations generated in this way is called

a Markov chain.

For an observable O we can define a simulation time average over a given set of

configurations {Uτi} generated in a Markov chain by

〈O〉N =
1

N

N
∑

i=1

O(Uτi) . (1-98)

We want to set up the transition probability in such a way that 〈O〉N is in the

limit N → ∞ equal to the ensemble average corresponding to a given Boltzmann

distribution e−S. In order to achieve this it is sufficient that the transition probability

fulfills as a sufficient condition the so called detailed balance condition

e−S(U)P (U → U ′) = e−S(U ′)P (U ′ → U) . (1-99)

There are many algorithms known that correctly implement the condition of detailed

balance. One of these is the Metropolis algorithm which is given by the following

two steps:

1. Chose an arbitrary test configuration U ′.
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2. Accept configuration U ′ as successor of configuration U with probability

P (U → U ′) =

{

e−S(U′)

e−S(U) if e−S(U ′) < e−S(U)

1 else .
(1-100)

This step is called a Metropolis accept/reject step.

The Metropolis algorithm is in principle applicable to a any system and it can be

very efficient, if one can efficiently produce test configurations in such a way that

the acceptance rate is high. One only has to take into account that the generation

of test configurations must be ergodic. This means nothing but that the probability

to generate configuration U ′ as a next test configuration must not be zero for any

possible configuration.

1.4.1 Quenched approximation

As explained before, the dependence of expectation values on the fermionic fields ψ

can be removed by the help of Wick’s theorem. An expectation value of an operator

O then reads

〈O〉 = 1

Z

∫

DU O[U ] e−SG[U ]−log detM [U ] . (1-101)

This means that only the integral over the color gauge configurations has to be per-

formed and we need an algorithm to generate color gauge configurations U with the

desired distribution. However, for instance for each accept/reject step the determi-

nant of M needs to be computed, which is an highly non-local object.

Therefore, solely due to limited computer resources, computations in lattice QCD

were often performed in a crude approximation: it consists of neglecting the fermion

contribution to the path integral, i.e. setting detM = constant . This approximation

corresponds to neglecting vacuum polarization effects of quark loops. As a conse-

quence for instance the string between a quark and an anti-quark does not break at

any distance.

Even though one could expect this approximation to be bad, since quenched lat-

tice QCD is confining, asymptotically free and shows spontaneous chiral symmetry

breaking, it is reasonable to use it as a model of QCD. As a side effect one can also

extract physical results and compare it to experiment. And in fact the quenched

approximation seems to work surprisingly well: the deviations from experimental

measurements are only of the order of 10%, even though the systematic errors are

hard to estimate.

From a practical point of view setting detM = constant corresponds to sim-

ulating a pure Yang-Mills gauge theory [71] with for instance the Wilson gauge

action (1-25) on the lattice. For pure gauge theories there are efficient Metropolis
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Monte-Carlo algorithms available, like the heat-bath and the overrelaxation algo-

rithm. While the latter of the two being not ergodic, their combination gives rise to

an efficient algorithm to generate gauge configurations with the correct distribution.

Details on this algorithm can be found in text books, see for instance Refs. [18, 19].

Finally we remark that, since r0 as defined in section 1.3.4 is a quantity depending

only on the gauge fields, the scale in quenched simulations does not depend on

the fermionic mass, but only on the coupling β in the here discussed quenched

approximation. It was computed for the Wilson plaquette gauge action in a range

of coupling constants between β = 5.7 and β = 6.75 in Ref. [72] (see also [73]).

Therefore, in the quenched simulations for this work we did not compute r0 but

rather used the values from Ref. [72].

1.4.2 Dynamical simulations

Of course, the aim of lattice QCD computations is to take the fermion determinant

into account††. The reason for full QCD simulations to be much more expensive

than the one in the quenched approximation is – as mentioned above – that the

computation of the determinant is rather demanding.

Nevertheless, there are two widely used algorithms, which include the determi-

nant in the generation of gauge configurations: on the one hand Multi-Boson like

algorithms [74] and on the other hand Hybrid Monte Carlo (HMC) like algorithms

[75]. The latter is discussed in detail in chapter 3, while the former is not used

for this work. However, a Two-Step Multi-Boson (TSMB) algorithm [76] was used

in the collaboration in addition to the HMC for checks and for production runs.

Naturally, we cross-checked the results and found full agreement within errors.

Details for Multi-Boson like algorithms can be found in the mentioned references.

1.4.3 Error estimates

In lattice simulations with Monte-Carlo methods there exist several sources of errors.

Apart from errors due to discretization and finite volume effects, the most important

contribution – and usually also the largest – is the statistical error.

The latter arises from the fact that due to finite computer and human resources it

is not possible to average over an infinitely large sample. Nevertheless, it is possible

to estimate the error one makes by approximating the infinite large sample with a

finite one. It is the content of this subsection to discuss the effects of taking only a

finite sub-sample.

††Only because for a long time most of the simulations have been performed in the quenched

approximation it became common to call full QCD simulations dynamical simulations.
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Statistical error

When averaging over a sample ofM configurations in order to measure the (primary)

observable O, the root-mean-square deviation‡‡ can be computed by

σ2
O,M =

1

M − 1





1

M

M
∑

i=1

O2
i −

[

1

M

M
∑

i=1

Oi

]2


 =
1

M − 1

(

〈O2〉 − 〈O〉2
)

, (1-102)

where Oi represents the i-th measurement of the observable O. For this estimate

it is necessary that the single measurements are not correlated, which is in general

not true. Therefore we call it the naive error estimate. In order to account for the

correlation one can use the integrated autocorrelation time τint. It can be defined as

follows

τint =
1

2

∞
∑

t̃=−∞

ΓO(|t̃|)
ΓO(0)

, (1-103)

where we label the “Monte Carlo time” with t̃ and we introduced the autocorrelation

function ΓO for an operator O

ΓO(|i− j|) = 〈(Oi − 〈O〉)(Oj − 〈O〉)〉 .

ΓO(|i − j|) depends only on the distance t̃ = |i − j| between measurements and

decays typically exponentially fast with the so called autocorrelation time τc

ΓO(t̃) ∝ exp(−t̃/τc) .

Typically τc and τint are found to be of the same order. There are two possibilities

to incorporate the integrated autocorrelation time in the estimate of the statistical

error:

On the one hand one can leave out during the course of production of configu-

rations τint many configurations until one is used for the measurements. Then the

sample of configurations is uncorrelated and the naive error (1-102) can serve as a

good approximation for the real error. This approach has the disadvantage that the

value of τint is in general not known before the measurements were performed and

one might perform measurements which are then not used for the final result.

On the other hand one can use the value of τint for the error computation taking

all the measurements into account: it is possible to show that the statistical error of

correlated measurements can be computed from the naive error and the integrated

autocorrelation time in the following way [77]

σ2
O,M = 2τint

(

σnaiv
O,M

)2
. (1-104)

‡‡The denominator arises from the fact that the exact mean value O was replaced by its estimate

over the sample, because the exact mean value is not known.
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This means de facto a reduction of the number of independent measurements to

M/(2τint).

Of course, when the integrated autocorrelation time shall be used to estimate the

error, a reliable estimate of τint itself and its error is needed. First of all a reliable

determination of τint is only possible, if the sample is large enough. Moreover the

estimation of the statistical error on τint is a delicate procedure. It is discussed in

detail in Ref. [78] and we will solely perform our error analysis along the lines of

this reference (cf. also [77]).

Another method to estimate the real error is to pre-average the measurements

on blocks of the total sample:

Ol,B =
1

B

lB
∑

i=1+(l−1)B

Oi, l = 1, ...,MB =
M

B
. (1-105)

If the blocks B become large enough – in units of τ order of τint – then the block

averages are uncorrelated and the error can be estimated by

σ2 =
1

MB(MB − 1)

∑

l

(

Ol,B −
1

MB

∑

l′

Ol′,B

)2

. (1-106)

The value of the latter will increase with increasing B and will, if the block-averages

become uncorrelated, reach a plateau. Of course the plateau will be only reached,

if the sample is large enough. This method is called binning.

A further method, which is similar to binning, is the so called Jackknife binning.

Instead of using the blocks itself to pre-average the measurements, the blocks com-

plementary to the binning blocks are used. Therefore the blocks are significantly

larger:

Ol,B̄ =
1

M −B





(l−1)B
∑

i=1

Oi +
M
∑

i=lB+1

Oi



 .

One can show that the error is now estimated by

σ2 =
MB − 1

MB

∑

l

(

Ol,B̄ −
1

MB

∑

l′

Ol′,B̄

)2

.

Especially for derived quantities the Jackknife binning is a widely used method (cf.

[18]).

In this work we solely rely on the error analysis with help of the integrated

autocorrelation time. The other methods are only used for checks. The statistical

error on the integrated autocorrelation time as well as the error for derived quantities

is determined along the lines of [78] (cf. [77]).
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Scaling test in the quenched

approximation

In this chapter we will derive a result that was thought to be almost impossible to

reach using the standard Wilson formulation of lattice QCD: we will give continuum

results (in the quenched approximation) for the pseudo scalar mass mPS, the pseudo

scalar decay constant fPS and the vector mass mV down to values of the pseudo

scalar mass of mPS = 270 MeV, a value that is almost a factor of 2 smaller than

what could be reached with Wilson fermions so far. This result is visualized in figure

2.1, which we will discuss later in detail. But we mention already now that, while

simulations with Wilson fermions [79] – represented by open squares – had to be

stopped∗ at values of mPS ≈ 600 MeV, our data – represented by open squares –

reach with controllable errors down to significantly smaller values of mPS. Thus,

we can finally enter a region of mass values, where contact to chiral perturbation

theory (χPT) can be made, without worrying about lattice artifacts and convergence

problems of χPT. The tool that made this possible is mtmQCD, as introduced in

section 1.2.4.

However, mtmQCD is still a rather new formulation of lattice QCD and hence we

had to ascertain and scrutinize this approach. Most important for our understanding

of mtmQCD has been a detailed scaling test, which we performed in a wide range of

lattice spacings and quark masses in the quenched approximation. In particular, the

range of mPS values has been between 270 and 1200 MeV and the range of lattice

spacings between 0.048 and 0.17 fm. We show that indeed lattice artifacts linear in

a are absent in physical observables and that residual lattice spacing artifacts are

small at all these values of mPS. We perform then continuum extrapolations for

the pseudo scalar decay constant and the vector mass finding full agreement with

∗In the literature one can find also simulations with Wilson fermions and smaller values of

the pseudo scalar mass (cf. for instance [80]). However, in those simulations single, so-called

exceptional configurations had to be removed from the ensemble “by hand”.
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[79]
chir. extr.
this work
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(a) Continuum values of fPS as a func-

tion of m2
PS.

[79]
chir. extr.
this work

mV [GeV]

m2
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1.20

1.00
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(b) Continuum values of mV as a func-

tion of m2
PS.

Figure 2.1: Continuum values of fPS [GeV] (a) and mV [GeV] (b) as a function of

m2
PS [GeV2] and the chiral extrapolation of our data. In addition to our results, repre-

sented by squares, we also plot continuum results extracted from data published in [79]

where non-perturbatively O(a) improved Wilson fermions were used. For the chiral extrap-

olation we used only our results and we indicate the linear extrapolation by the dashed

lines. The dotted vertical lines roughly mark the value of mPS where simulations with

Wilson fermions had to be stopped.

results available in the literature. In addition we address the important question

about size and scaling behavior of flavor breaking effects in mtmQCD, which vanish

as a2, while being non-negligible of size.

Moreover, we compare at one value of the lattice spacing mtmQCD with the

overlap formulation of lattice QCD, the latter of which has exact chiral symmetry

at finite values of the lattice spacing a, as explained in section 1.2.2. We show that

for all the quantities investigated here both formulations reveal consistent results.

In particular, it is possible to simulate with both formulations pseudo scalar masses

lower than 300 MeV without practical problems. However, a cost comparison yields

that the overlap formulation is a factor of 20 to 70 more expensive than mtmQCD.

2.1 The definition of the critical mass

Naturally, when a new formulation is under investigation there are a lot of subtleties

to understand and to learn. One of those in case of mtmQCD is the definition of the

critical mass, whose potential influence on the cut-off effects will be discussed in the

following section. However, beforehand we would like to stress the following remarks:
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the proof of O(a) improvement for mtmQCD is based on the Symanzik effective

theory [12, 13, 14], implying that the proof is only valid if the Symanzik expansion

itself is valid. In particular, the lattice spacing should be sufficiently smaller than the

physical scale. Moreover, since the Symanzik expansion is a perturbative concept,

it is assumed that the dependence of quantities under investigation on the lattice

spacing is smooth. Especially, in the vicinity of a dis-continuous phase transition

– as we will find in the case of dynamical twisted mass fermions in chapter 4 – we

cannot expect the expansion to hold.

The only parameter that needs to be tuned in tmQCD in order to obtain O(a)

improvement is the twist angle. Maximal twist is achieved by tuning the angle to a

value of π/2, which is equivalent to setting the value of κ to its critical value κcrit

(1-30), or equivalently the value of the (untwisted) bare quark mass m0 to its critical

value mcrit. In other words, we are interested in a situation where the renormalized

quark mass is determined only by the twisted mass mR ∼ µ, i.e. the twisted mass

term determines physics. However, any lattice determination of κcrit is affected by

errors, which in turn means that the (untwisted) bare quark mass is zero only up

to an error: mq = 0 + δ. This error can have significant consequences for the O(a)

improvement, which we exemplify in the following. Consider again the renormalized

quark mass mR at finite lattice spacing. Neglecting the renormalization factors for

a moment, which are of order one, this quantity can be estimated by a combination

of the twisted mass parameter µ and the untwisted quark mass mq to be

mR ∼
√

µ2 +m2
q = µ

(

1 +
m2
q

2µ2
+O(m4

q/µ
4)

)

, (2-1)

where the expansion is only valid if mq = δ ≪ µ. It is evident from Eq. (2-1) that

if δ ≪ µ is fulfilled the residual value of mq contributes only as a small quadratical

correction. On the other hand, if δ ≪ µ is not fulfilled physics is no longer dominated

by the twisted mass term as it should be at maximal twist. Hence, it is important

for O(a) improvement to use a κcrit determination with δ as small as possible.

Note that if δ ≈ ∆a+O(a2) with a coefficient ∆ one can always find a value of

a keeping µ fixed in physical units, where δ ≪ µ is fulfilled.

In practice, there are at least two ways to determine the value of κcrit: the first

is to determine the value of κ where the value of amPS vanishes with pure Wilson

fermions, i.e. µ = 0. We will refer to this determination method as the pion defini-

tion of κcrit and denote it with κpion
crit . This determination involves an extrapolation

of (amPS)
2 in κ to the κ value where amPS vanishes. The extrapolation contains

usually a large uncertainty because simulations with pure Wilson fermions and small

pseudo scalar masses are hardly possible and therefore, one has to extrapolate from

rather large masses. Unfortunately, the size of the extrapolation error is unknown

and cannot easily be parameterized in terms of the lattice spacing.
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β 5.7 5.85 6.0 6.1 6.2 6.45

r0/a 2.924 4.067 5.368 6.324 7.360 10.41

L3 × T 143 × 28 163 × 32 163 × 32 203 × 40 243 × 48 323 × 64

Npion
meas 600 378 387 300 260 182

NPCAC
meas 600 500 400 - 300 -

Table 2.1: For the six values of β this table contains the vlaue for r0/a, the lattice size and

the number of measurements Npion
meas with the pion definition and NPCAC

meas with the PCAC

definition of κcrit.

The second definition of κcrit we consider here makes use of the PCAC relation:

At fixed non-zero value of the twisted mass parameter µ the value of κ needs to be

determined where the value of mPCAC
χ vanishes. The resulting value κcrit(aµ) is still

depending on the value of µ. This dependence can be removed by extrapolating

κcrit(aµ) to aµ = 0. The extrapolation is only short in µ since simulations with

a twisted mass parameter can be safely performed also with small values of aµ

and therefore the extrapolation error is assumed to be small. We will refer to this

definition of κcrit as the PCAC definition and denote it with κPCAC
crit . Note that one

main difference between the two definitions is that for κpion
crit pure Wilson fermions

are used, while for κPCAC
crit the tmQCD regularization is used.

In this chapter we will use both of the two definitions for κcrit and compare the

residual lattice artifacts in physical observables between the pion definition and the

PCAC definition for various values of the quark mass and the lattice spacing.

We remark here that the “optimal” definition of κcrit with respect to O(a) im-

provement with mtmQCD is theoretically not yet clarified. Nevertheless, a detailed

discussion of lattice artifacts of mtmQCD can be found in Ref. [45]. In fact, it was

shown in this reference that in the Symanzik expansion of an operator O at max-

imal twist there appear at order a2 terms proportional to 1/m4
PS, which are called

leading “infra-red divergent” cut-off effects. These terms will be strongly visible as

large O(a2) cut-off effects in the limit of vanishing pseudo scalar masses. In the

same reference it was shown that with the PCAC definition of κcrit the coefficients

multiplying the (a/m2
PS)

2 terms vanish faster in the chiral limit than 1/m4
PS curing

such the problem of those large cut-off effects. Note that in Refs. [81, 82] the same

proposal was made, including also arguments from χPT. For a recent discussion see

also Refs. [83, 84].
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2.2 Scaling test set-up

In order to verify the prediction of Ref. [42] of O(a) improvement at ω = π/2 we

have chosen up to six values of the bare coupling constant β in a range of lattice

spacing between 0.048 fm and 0.17 fm. We used the Wilson plaquette gauge action

(1-25) and periodic boundary conditions for gauge and fermion fields. The β values

can be found together with the values for r0/a and the lattice sizes in table 2.1.

The number of measurements Nmeas for the two κcrit definitions can also be found

in table 2.1. We have set the Wilson parameter to r = 1 and used r0 = 0.5 fm to

set the scale throughout this chapter.

In order to fix the physical situation in our scaling test, we decided to study

physical quantities as a function of β (i.e. as a function of a) for fixed values of

r0mPS. For this purpose we roughly fixed the values of r0µ at each β value to

r0µ ≈ 0.02, 0.04, 0.08, 0.16, 0.24, 0.32, 0.40. For the PCAC definition we have two

additional intermediate values r0µ ≈ 0.059 and r0µ ≈ 0.123. Note that at β = 6.45

we have simulated only the two lightest quark masses with the pion definition in

order to check our continuum extrapolations.

Due to the wide range of twisted mass values at each β value we could then

interpolate the results when necessary to match a desired value of r0mPS. For

the quantities we considered here it was sufficient to perform a linear interpolation

in (r0mPS)
2 between the two closest points. We used the ROOT and MINUIT

packages from CERN (cf. [85, 86]) for these interpolations. Since we do not want

to extrapolate to mass values where we have no data available, the lowest value of

the pseudo scalar mass was 298 MeV with the pion definition of κcrit and 270 MeV

with the PCAC definition.

Since in this chapter we work in the quenched approximation the gauge config-

urations do not depend on the bare quark masses. We produced at each value of

β an ensemble of gauge configurations using a combination of the over-relaxation

and the heat-bath algorithm. One heat-bath sweep was always followed by L/2 + 1

over-relaxation sweeps, where L is the spatial lattice size. We skipped as many inter-

mediate configurations as needed to obtain completely independent configurations.

Again, because the configuration at each β value are quark mass independent,

we could make use of a multi mass conjugate gradient (CG-M) iterative solver as

explained in appendix B.2. Such a solver allows one to invert on the lowest mass and

get within the same inversion also the result for all the other masses. At β = 6.45,

however, we used even/odd preconditioning, since we simulated only the two lowest

values of r0µ. This preconditioning accelerates the solvers, but prevents us to use a

multi mass solver.

In order to compute the quark propagators needed in the contraction of the

correlation functions, the Dirac operator needs to be inverted on a given source.
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amPS

aµ 123 × 24 142 × 32 163 × 32 amPSL|(L=16)

0.005 - - 0.1700(25) 2.7

0.01 0.2327(70) 0.2301(37) 0.2254(19) 3.6

0.02 0.3193(48) 0.3175(30) 0.3122(16) 5.0

0.04 0.4520(40) 0.4506(23) 0.4452(14) 7.1

0.06 0.5596(35) 0.5575(19) 0.5535(12) 8.9

0.08 0.6541(31) 0.6510(17) 0.6488(11) 10.4

0.10 0.7417(26) 0.7378(16) 0.7359(11) 11.8

Table 2.2: Values of amPS at β = 5.85 for three different lattice Volumes: 123×24, 142×32

and 163 × 32. In the last column we also give the value of amPSL for the 163 × 32 lattice.

The simplest choice here is to use a point source located at x = 0 and for every

combination of color and spinor indices. Therefore, 12 inversions are needed per

configuration. We used a point source for all the results with the pion definition of

κcrit. However, it is known that the overlap with the ground state can be improved

if (sink) smearing techniques are applied, which turned out to be crucial in order to

determine a reliable estimate for the vector meson mass mV. We used Jacobi sink

smearing [87] for the determination of mV with the PCAC definition of κcrit. Since

we did not use smearing techniques with the pion definition, we were not able to

reliably extract values for amV in this case.

2.2.1 Finite volume effects

Before presenting the results of the scaling test, we show in this subsection results

at one value of β = 5.85 for three different lattice volumes in order to check for

finite volume effects. At this value of β we have performed 140 measurements on

a 123 × 24 lattice, 140 measurements on a 143 × 32 lattice and 380 measurements

on a 163 × 32 lattice, corresponding to physical spatial extends of about 1.48 fm,

1.72 fm and 1.96 fm, respectively. The hopping parameter was set to its critical

value κpion
crit = 0.161662(17) obtained with the pion definition of κcrit. We measured

the values of the pseudo scalar mass for all three volumes and collected the data in

table 2.2.

Aiming for an analysis along the lines of Ref. [88], we first extrapolated the

pseudo scalar masses to L =∞ by fitting a functional form

amPS(L) = amPS(L =∞) +
a1

L3/2
exp {−a2amPS(L =∞)L} (2-2)

with coefficient a1 and a2 to our data. For the three values of aµ between 0.01 and

0.04 we show the data points together with the fits in figure 2.2(a). From this figure
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Figure 2.2: Finite volume effects in mPS at β = 5.85. In (a) amPS is plotted as a function

of (1/L) together with exponential fits to the data (see text). In (b) the relative finite

volume effects are plotted as a function of amPSL. In both graphs we plot only data for the

three lowest values of aµ. Note that in our notation L is dimensionless.

it is already evident that finite volume effects, at least for the quantity amPS are

small. An analysis of (mPS(L) − mPS(L = ∞))/mPS(L = ∞) (see figure 2.2(b))

shows that for the simulation points corresponding to the smallest values of aµ

the finite volume effects are within 2− 3 percent and at most within two standard

deviations from the extrapolated infinite volume limit. In practice they are thus not

relevant for the following discussion.

Other quantities than mPS are affected by finite volume artifacts of qualitatively

the same form as Eq. (2-2) with, of course, in general different coefficients. However,

since for the following scaling test we will stay at almost constant physical volume

for all values of β under investigation, the scaling test itself should not be affected

by finite volume effects.

2.3 Scaling test of mtmQCD

In this section we present the numerical results of the scaling test. We first compare

the scaling behavior for the two definitions of κcrit, present then continuum results

for fPS and mV and investigate the flavor breaking effects. Finally, we compare the

twisted mass and the overlap formulation.
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β κpion
crit κPCAC

crit

5.7 0.169198(48) 0.171013(160)

5.85 0.161662(17) 0.162379(93)

6.0 0.156911(35) 0.157409(72)

6.1 0.154876(10) -

6.2 0.153199(16) 0.153447(32)

6.45 0.150009(11) -

Table 2.3: Values of κpion
crit and κPCAC

crit for all values of β.

2.3.1 Scaling of the pseudo scalar decay constant with the

pion definition of κcrit

At all the β values of our simulations we made our own determination of the value

of κpion
crit from the intercept in κ at zero pseudo scalar mass. The values of κpion

crit are

given in table 2.3. In a first step we then computed the values of amPS at each of

our simulation points. The values can be found in table C.1 in appendix C.

Since we work at maximal twist at each value of β we can extract the pseudo

scalar decay constant fPS as explained in section 1.3 Eq. (1-84). This prescription

allows the extraction of fPS without the need to compute renormalization constants.

The results are collected in table C.2 and they are visualized in figure 2.3, where we

show r0fPS as a function of (a/r0)
2. The different symbols correspond from top to

bottom to about mPS = 720 MeV, 515 MeV, 380 MeV and 300 MeV. In addition to

our data represented by the open symbols we also plot our continuum extrapolation

represented by filled symbols (for better visibility some points are slightly displaced).

For the continuum extrapolations we used only the data for β ≥ 6.0.

For the interpretation of figure 2.3 it is important to remind that – since we

use a multi mass solver – the results at one lattice spacing for different masses

are strongly correlated, which explains the similar fluctuations at fixed a/r0 for the

different values of r0mPS. First of all it is evident from figure 2.3 that for all values of

r0mPS plotted the cut-off effects are linear in (a/r0)
2 for lattice spacings lower than

a given bound. From figure 2.3 we can estimate this bound to be (a/r0)
2 < 0.04.

The slope of the continuum extrapolation, however, is strongly mass dependent: it

becomes steeper the lower the pseudo scalar mass value becomes. This can only be

explained with a dependence of the O(a2) cut-off effects on the mass as described

in Ref. [45]. The size of these cut-off effects can be significantly reduced by using

the PCAC definition of κcrit, as will be shown in the following subsections.
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Figure 2.3: Scaling plot for r0fPS as a function of (a/r0)
2 for four different values of r0mPS.

The different symbols correspond from top to bottom to 718 MeV, 515 MeV, 379 MeV

and 298 MeV. Our data points are represented by open symbols while the continuum

extrapolations are plotted with filled symbols

2.3.2 Critical mass from the PCAC relation

With the PCAC definition we considered only the β values 5.7, 5.85, 6.0 and 6.2.

At each of these β values we first determined the values of κPCAC
crit with the method

explained above and collected them in table 2.3. An example for this determination

at β = 5.7 can be found in figure 2.4, where we show in the left panel the interpola-

tion in 1/κ to the point where mPCAC
χ = 0 and in the right panel the extrapolation

of κcrit(aµ) to aµ = 0. With the straight line we indicate the linear extrapolation

to aµ = 0 and in addition we included the value of κcrit determined by the pion

definition in the figure. The difference is supposed to be of O(a). The errors on the

values of κPCAC
crit in table 2.3 stem from the necessary inter- and extrapolation.

The first quantity we investigated was again the pseudo scalar meson mass mPS.

The data are collected in table C.3 in appendix C. In figure 2.5(a) (amPS)
2 is plotted

as a function of aµ at β = 6.0 for the two definitions of κcrit. The data points for

the PCAC definition show a linear behavior in aµ down to very small bare quark

masses, which is not observed with the pion definition of κcrit. This effect is better
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(a) Interpolation in 1/κ.

aµ

(1/κcrit)

0.030.020.010

5.93

5.91

5.89

5.87

5.85

5.83

(b) Extrapolation in aµ.

Figure 2.4: Determination of the critical hopping parameter from the PCAC definition at

β = 5.7: (a) interpolation of amPCAC
χ (1/κ) to mPCAC

χ = 0 for one value of the twisted mass

parameter aµ = 0.028 (b) 1/κcrit versus aµ, extrapolation to aµ = 0, the triangle indicates

the 1/κcrit value determined by (amPS)
2 → 0 at µ = 0 for unimproved Wilson fermions.

visible in figure 2.5(b), where we plot (amPS)
2/(aµ) as function of aµ. The same

behavior is observed for the other β values. This shows that the GMOR relation

[89] on the lattice

m2
PS = µ

2|〈0|P |π〉|2
Σ

+O(a2) , (2-3)

is not affected by large cut-off effects (see Ref. [45]) when the PCAC definition is used

for the determination of κcrit. Relation (2-3) can be derived from a vector variation

of the charged pseudo scalar density, similar to the pure Wilson case [90]. It allows

the extraction of the scalar condensate Σ with the need of only the renormalization

factor ZP = 1/Zµ. Our determination of ZP and Σ is ongoing [91].

2.3.3 Scaling of fPS with the PCAC definition of κcrit

As a next quantity we determined fPS from the data with the PCAC definition of

κcrit. The values can be found in table C.4 in appendix C. In order to compare to

the results obtained with the pion definition we had to match the values of r0mPS

by interpolating our results.

First of all, for all our values of r0mPS the observed cut-off effects in fPS are

linear in (a/r0)
2. Moreover, if we consider at several values of r0mPS the size of

the O(a2) cut-off effects, we find that with the PCAC definition of κcrit their size is

significantly reduced for small values of r0mPS when compared to the pion definition.
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Figure 2.5: (a) Pseudo scalar mass squared as a function of aµ both, for the pion definition

and the PCAC definition of κcrit at β = 6.0. (b) (amPS)
2/(aµ) for both κcrit definitions as

function of aµ at the same value of β. The pion definition data are in (a) and (b) slightly

displaced for better visibility.

For the values of mPS = 298 MeV and mPS = 515 MeV we have plotted fPS in figure

2.6 as a function of (a/r0)
2 for both definitions of κcrit. It is evident that down to

a pseudo scalar mass of 298 MeV the extrapolation of the PCAC definition data

is essentially flat. Moreover, the continuum values extrapolated separately for the

pion definition and the PCAC definition data agree very well within the errors.

As expected, at small values of the pseudo scalar mass the size of the residual

cut-off effects is significantly smaller if the PCAC definition is used instead of the

pion definition.

2.3.4 Scaling of the vector meson mass with the PCAC def-

inition of κcrit

The second quantity we used to check the prediction of automaticO(a) improvement

is the vector mass mV. At maximal twist this mass can be extracted from the

exponential fall of the two point correlation function CAA or CTT in the twisted

basis as explained in section 1.3. The extraction of a value for mV is difficult

without smearing techniques, which is in particular the case for small quark masses.

Therefore, we used local source and Jacobi smeared sinks to extract the vector meson

mass. In addition it turned out that the tensor correlator systematically shows

smaller statistical fluctuations and thus, we used exclusively the tensor correlator

for the determination of values for amV. As explained above we have for mV only
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Figure 2.6: Scaling plot for r0fPS as a function of (a/r0)
2 for mPS = 298 MeV (open circles

and open squares) and mPS = 515 MeV (open triangles and open inversed triangles). The

data points are represented by open symbols while the continuum extrapolations are plotted

with filled symbols. Open squares and open triangles represent data obtained with the pion

definition of κcrit, while the open circles and the open reversed triangles represent data

obtained with the PCAC definition. The PCAC definition continuum points are slightly

displaced for better visibility.

results obtained with the PCAC definition of κcrit.

The values for amV for all our simulation points with the PCAC definition can

be found in table C.5. In fig. 2.7 we show our results for the vector meson mass

as a function of (a/r0)
2 for values of mPS = 900 MeV, 730 MeV and 270 MeV. As

observed for fPS, the continuum extrapolations for mV are essentially flat down to

pseudo scalar masses of 270 MeV for (a/r0)
2 ≤ 0.06, confirming again the expected

O(a) improvement with mtmQCD.

2.3.5 Continuum extrapolation

The continuum extrapolated values of the pseudo scalar decay constant and the vec-

tor mass for nine values ofmPS are summarized in table C.6. The values quoted there

have been extracted only from the data obtained with the PCAC definition, because
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Figure 2.7: r0mV as a function of (a/r0)
2 for three values of r0mPS with the PCAC

definition of κcrit.

they show much less residual lattice artifacts and the continuum extrapolations are

thus more reliable.

In the figures 2.1(a) and 2.1(b), which can be found at the beginning of this

chapter, we plot the continuum values of fPS and mV as functions of m2
PS in physical

units. As a comparison we also plot continuum values that we extracted from the

data presented in Ref. [79] where non-perturbatively O(a) improved Wilson fermions

have been used. Both quantities show a linear behavior in the pseudo scalar mass

squared without signs of artifacts as predicted from quenched chiral perturbation

theory (proportional to log a). Moreover, our results fully agree with the results

extracted from Ref. [79], at least for the large values of mPS where a comparison is

possible. We extrapolated our results linearly to the chiral limit which is indicated

by the dashed lines in the two panels of figure 2.1. The values for fPS and mV in the

chiral limit are collected in table 2.4 together with the values of fπ, mρ, fK and mK∗

(the last two in the SU(3) symmetric limit). They were obtained either through the

extrapolation to the chiral point (chiral limit, fπ, mρ), or by an interpolation (fK,

mK∗).

The ratio fK/fπ = 1.11(5) is 10% smaller than the experimentally obtained
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mPS [GeV] fPS [GeV] mV [GeV]

0.0 0.144(4) 0.873(32) chiral limit

0.137 0.145(4) 0.880(32) (fπ, mρ)

0.495 0.162(5) 0.971(34) (fK, mK∗)

Table 2.4: fPS and mV in the continuum (PCAC definition). The values are obtained from

a linear fit on the smallest 4 masses (5 in the case of mV) and correspond to: the values in

the chiral limit (first row); fπ and mρ (second row); fK and mK∗ in the SU(3) symmetric

limit (third row).

values. This deviation is, however, consistent with what was observed in previous

quenched calculations [92, 80]. Moreover, the values of mρ and mK∗ turn out to be

10− 15% larger than the experimental values again consistent with other quenched

calculations [80].

2.3.6 Flavor breaking effects

As mentioned in section 1.2.4 the flavor chiral rotation to the twisted basis is in the

continuum only a formal transformation that leaves the theory invariant. Therefore,

even if flavor symmetry seems to be broken in the twisted basis, in the continuum

it is only replaced by a modified, but equivalent flavor symmetry. This is not longer

true at finite lattice spacing where the flavor symmetry is explicitly broken and only

restored in the continuum limit. This manifests itself for instance as a non-vanishing

difference of the charged mPS+ and the neutral mPS0 pseudo scalar masses, which

is expected to vanish towards the continuum as a2. It is an important question

whether this expectation proves true in practice.

If we consider the local bilinears P± = χ̄γ5
τ±

2
χ and P 0 = χ̄χ similar to what

we explained in section 1.3, we can extract values for amPS+ and amPS0 from the

following correlation functions:

CmPS+ (t) = a3
∑

x

〈[P+(x)P−(0)]con〉 ,

CmPS0 (t) = a3
∑

x

〈[P 0(x)P 0(0)]con + [P 0(x)P 0(0)]disc〉 .
(2-4)

Here we denote with [.] the fermionic contractions only and indicate with the sub-

scripts “con” and “disc” the connected and the disconnected pieces of the correlation

function, respectively. For the neutral pseudo scalar mass it is thus in general needed

to evaluate the disconnected contribution

[P 0(x)P 0(0)]disc = Tr
{

D−1
tm

}

(x) Tr
{

D−1
tm

}

(0) . (2-5)
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(b) Absolute pseudo scalar mass splitting

with mPS+ = 382 MeV.

Figure 2.8: Absolute pseudo scalar mass difference as a function of (a/r0)
2 for mPS+ =

298 MeV and mPS+ = 382 MeV employing the pion definition and the PCAC definition for

the critical point.

with the vacuum contribution to Tr
{

D−1
tm

}

being subtracted and the trace is taken

over color and Dirac indices. There are several techniques available to compute those

contributions on the lattice, which are mostly based on stochastic estimators and

usually rather computer time demanding (see for instance Refs. [93, 94]). However,

since we work in the quenched approximation there is a possibility to investigate

the aforementioned mass splitting from the connected piece in CmPS0 only, by rein-

terpreting the connected piece with the help of the Osterwalder-Seiler (OS) action

[95, 96].

The Osterwalder-Seiler action is identical to the twisted mass action, only the τ3
matrix acting in flavor space is replaced with the unit matrix. Thus, mPS+ = mPS0

because flavor symmetry is un-broken and

COS
mPS+

(t) = COS
mPS0

(t) . (2-6)

The key observation is now that in the quenched approximation, and only in the

quenched approximation

COS
mPS0

(t) =
(

Ctm
mPS0

(t)
)

con
, (2-7)

allowing us to interpret (Ctm
mPS0

(t))con as the correlation function of a local operator.

Hence, (Ctm
mPS0

(t))con has a standard transfer matrix decomposition and the neutral

pseudo scalar mass can be extracted from its exponential decay with good precision.

49



CHAPTER 2. QUENCHED SCALING TEST

We have extracted values for amPS0 for β = 5.85, β = 6.0 and β = 6.2 with

the pion definition and the PCAC definition of κcrit. They can be found in the

tables of Ref. [96]. In figure 2.8 we show the mass difference r2
0(m

2
PS0 −m2

PS+) as a

function of (a/r0)
2 for both definitions of κcrit and for values ofmPS+ = 298 MeV and

387 MeV. As expected, the difference vanishes proportional to a2 and the continuum

extrapolated values are consistent with zero. However, the mass splitting is not small

and in addition its size differs significantly for the two definition of κcrit: the results

obtained with the PCAC definition show larger flavor breaking effects. This is at

first unexpected, because for all the other quantities used in this scaling test the

O(a2) artifacts are smaller for the PCAC definition when compared to the pion

definition.

Our interpretation for this phenomenon is again based on the symmetries of the

twisted mass formulation. With the PCAC definition parity is maximally restored

at finite lattice spacing, but at the same time flavor symmetry is maximally broken,

which is expressed in chiral perturbation theory in the fact that the mass splitting is

proportional to sin(ω) [97, 82]. We also remark that the mass splitting (mPS0−mPS+)

comes out to be positive which is consistent with the realization of an Aoki phase

scenario in the quenched approximation (see chapter 4 for more details).

2.4 Overlap versus twisted mass fermions

In the last section we have demonstrated that with mtmQCD O(a) improvement

can be obtained without the need of any improvement coefficient, which is indeed a

big advantage of this lattice QCD formulation. We mentioned in section 1.2.4 that

tmQCD has a further advantage compared to the original Wilson formulation: the

twisted mass parameter serves as an infra-red regulator for the low lying eigenvalues

of the lattice Dirac operator [43]. Therefore, it is possible to perform simulations

with pseudo scalar mass of about 270 MeV as we have also shown in the last section.

The tmQCD formulation shares these two properties with the overlap formula-

tion, while the latter has the additional property of exact chiral symmetry on the

lattice. All this makes a comparison between the two formulations rather interest-

ing. Unfortunately, as also discussed in section 1.2.2, the overlap formulation is

much more computer time demanding than the twisted mass formulation making it

impossible for us to repeat the scaling test as presented in the last section with the

overlap operator. We could only afford for simulations with the overlap formulation

at one value of β = 5.85 on lattices of size 123×24 (for a first scaling study see [98]).

We used the overlap operator as defined in Eq. (1-38) with the parameter ρ = 1.6

fixed and bare masses of amov = 0.01, 0.02, 0.04, 0.06, 0.08, 0.10 matching six values

for aµ for the twisted mass simulations at β = 5.85. We approximated the inverse
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amov amPP−SS
PS aLmPP−SS

PS afPS amV

0.01 0.140(20) 1.6 0.0934(90) 0.632(34)

0.02 0.196(14) 2.3 0.1012(53) 0.638(26)

0.04 0.280(10) 3.4 0.1060(34) 0.653(16)

0.06 0.346(8) 4.2 0.1106(25) 0.666(12)

0.08 0.401(7) 4.8 0.1157(22) 0.683(09)

0.10 0.451(6) 5.4 0.1209(21) 0.702(08)

Table 2.5: Values for the pseudo scalar mass with the overlap formulation at β = 5.85

on 123 × 24 lattices. In addition we provide values for aLmPP−SS
PS , the pseudo scalar decay

constant and vector mass for overlap at β = 5.85.

square root by means of Chebyshev polynomials to an absolute accuracy of 10−15.

In the construction of the polynomial we also project out the lowest 20 eigenvalues

of Q2 = (γ5DW)2. For details on the numerical treatment of the overlap operator

see Ref. [99]. With the overlap operator we performed measurements on 140 gauge

configurations and extracted values for amPS, afPS and amV.

The pseudo scalar mass has been extracted from Cov
PP−SS (cf. Eq. 1-88). The

scalar meson state did not affect the extraction, presumably because the quark

masses are small enough to let the pseudo scalar state be dominant at sufficiently

small values of t/a. The values for amPS can be found in table 2.5. In addition to

these values we provide values for aLmPP−SS
PS which we used to estimate the finite

volume effects. Given these values of aLmPP−SS
PS and the experience from tmQCD,

we expect very small finite volume effects for the five heaviest quark masses (again

at a level of a few percent). For the lowest mass finite volume effects can be more

relevant and therefore we usually do not include the corresponding data points in

fits. However, the analysis of the quantities presented below suggests that also for

this value of the quark mass amov = 0.01 finite volume effects are not larger than

our statistical error.

In figure 2.9 we show the pseudo scalar mass squared as a function of the bare

mass ambare for the overlap and the twisted mass formulation at β = 5.85. For

the overlap formulation the bare mass corresponds to amov while for twisted mass

fermions to aµ. For the twisted mass data we took solely the results obtained with

the PCAC definition of κcrit. In addition to our twisted mass and overlap data we

show data points obtained with standard O(a) improved Wilson fermions [100, 101].

From figure 2.9 one can see that at equal value of the bare quark mass the value

of amPS is smaller for overlap fermions than for twisted mass fermions. This suggests

that the renormalization factor Zµ of the quark mass is larger for Wilson twisted

mass fermions compared to the corresponding factor for overlap fermions. Neverthe-

less, it is evident that with both formulations values of about mPS = 270 MeV can
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Figure 2.9: Comparison of am2
PS as a function of the bare quark mass between overlap

and twisted mass formulation at β = 5.85. The overlap data are represented by open circles

and the twisted mass data by open squares. In addition we plot data from simulations with

O(a) improved Wilson fermions [100, 101]. mbare labels the quark mass corresponding to

µ for tmQCD and to mov the overlap. The solid lines are fits to the twisted mass and the

overlap data. While for the fit we used in case of the overlap all the data points, for the

twisted mass data we used only the four data points corresponding to the lowest pseudo

scalar masses.

be reached without suffering from exceptional configurations. Moreover, for both

formulations the squared pseudo scalar mass can be well approximated by a linear

function of the bare quark mass down to the smallest mass values. In fact a linear

extrapolation to the chiral limit gives in both cases a value for the intercept which

is zero within the errors. For the twisted mass data we included only the lowest five

masses in the fit, which was not necessary in case of overlap fermions.

In table 2.5 we have also collected the results for afPS and amV for the over-

lap operator at β = 5.85. The values for afPS were determined using Eq. (1-93)

and hence, do not require any renormalization constant. The vector mass mV was

extracted from Cov
V V (1-90).

Since we could perform the continuum extrapolation for these two quantities

with the twisted mass formulation, we can compare the overlap results at β = 5.85

on the one hand to twisted mass results at the same β value and on the other hand

to the continuum results. The result of this comparison can be found in the four

panels of figure 2.10.

In this figure we plot r0fPS and r0mV as functions of (r0mPS)
2. For the twisted

mass results at β = 5.85 we use solely the data obtained with the PCAC definition
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(d) r0mV from overlap (β = 5.85) com-

pared to the (twisted mass) continuum ex-

trapolated values versus (r0mPS)
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Figure 2.10: Comparison overlap and twisted mass formulation for fPS and mV.

of κcrit. For both quantities a difference between the overlap results and the twisted

mass results at finite values of the lattice spacing are visible, as well as between the

overlap results and the continuum results. This suggests that the results obtained

with the overlap operator are affected by small, but visible O(a2) lattice artifacts.

Comparing 2.10(a) with 2.10(b) and 2.10(c) with 2.10(d) it is visible, that the

data points for twisted mass at β = 5.85 and the continuum points are very close to
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mPS [MeV] aµ amov

230 0.004 0.01

390 0.0125 0.03

555 0.025 0.06

720 0.042 0.10

Table 2.6: Bare quark masses for the cost comparison between overlap and twisted mass

formulation at β = 5.85.

each other. This indicates again that the O(a2) lattice artifacts in these quantities

are very small.

2.4.1 Cost comparison

So far we have concentrated in this section on the comparison between the overlap

and the twisted mass formulation of lattice QCD on the basis of physical results. We

have seen that both the formulations are capable of simulations with pseudo scalar

masses lower than 300 MeV. Despite the fact that the overlap formalism provides

exact chiral symmetry on the lattice and is thus theoretically best founded for lattice

simulations, it seems that twisted mass fermions can serve for many quantities as

an equivalent alternative. This becomes even clearer by noting that with dynamical

twisted mass fermions and a clever choice of the valence quark discretization mixing

of operators with wrong chirality can often be avoided [46]. Thus we are eventually

left to decide between the two formulations by means of a cost comparison.

In order to perform a cost comparison between twisted mass and overlap for-

mulation we have chosen a set-up consisting of two quenched ensembles of 20 con-

figurations with L = T = 12 and L = T = 16, respectively. Both were generated

with the Wilson gauge action at β = 5.85 corresponding to a lattice spacing of

a = 0.12 fm. We have tuned the bare twisted mass parameter aµ and the overlap

bare quark mass amov such that the values of the pseudo scalar masses are matched.

The actual values can be found in table 2.6.

We then invert the twisted mass and the overlap operator separately on two

point-like sources η requiring a stopping criterion of ‖Ax − η‖ < 10−14. We are

working in the chiral basis (see appendix A.1) and have chosen the two sources

to correspond to the two different chiral sectors. The inversions are usually per-

formed with iterative solvers. In order to test the performance of different available

solvers, we have implemented the minimal residual (MR), the conjugate gradient

normal equation (CG(NE)), the conjugate gradient squared (CGS), the stabilized

Bi-conjugate gradient (BiCGstab), the generalized minimal residual (GMRES) (see

Ref. [102] for all of them) and the shifted minimal residual (SUMR) (cf. Ref. [103])
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iterative solvers. The SUMR method is not applicable to the twisted mass operator,

because it requires a shifted unitary operator. Moreover, some of the solvers fail to

invert the twisted mass operator or converge only if Dtm is multiplied with γ5.

The computationally most expensive part in the inversion of the overlap operator

is the approximation of (A†A)−1/2 in Eq. (1-37), where we use the hermitian Wilson-

Dirac operator as kernel A ≡ Q = γ5DW. As mentioned before the square-root is

approximated by means of Chebyshev polynomials, which have an degree of the

order 200 − 300 in our particular set-up, if we project out the lowest 20 and 40

eigenvectors of Q on the 124 and 164 lattices, respectively. Hence, per application

of the overlap operator the Wilson-Dirac operator must be applied order 400− 600

times.

One strategy to reduce the number of Q application during the inversion of Dov

is to adapt the accuracy of the Chebyshev approximation. This can speed up the

inversion by large factors since a reduction in the order of the polynomial enters

multiplicatively in the total cost of the inversion. We denote the usage of adaptive

precision by a subscript ap to the solver name. Depending on the solver the adaptive

precision was applied in different ways. In case of the CGap we cut the polynomial

as soon as the contribution to the resulting vector are smaller than the desired

residuum by a factor 10−2. This requires the full polynomial only at the beginning

of the CG-search while towards the end polynomials of O(10) are sufficient. In the

case of the MRap or the GMRESap on the other hand it is possible to start with a

O(10) polynomial right at the beginning. From time to time the introduced error

is corrected for by calculating the residuum to full precision. This corresponds to a

restart of the solver, which is for these two particular solvers a natural procedure.

In the special case of the CG(NM) solver an additional factor of two can be

saved when the overlap operator is inverted. Since in the CG(NM) the squared

operator γ5Dovγ5Dov - which is real and positive - is inverted, one can make use of

the property of Dov that P±DovP± ∝ P±D
†
ovDovP±, where P± = (1± γ5)/2 denote

the projectors on the positive and negative chiral sector. Therefore, if the sources

are chiral half of the applications of Dov can be saved. We denote this algorithm by

CGχ, which can also be combined with adaptive precision CGap,χ.

A further way to speed up the inversion of the overlap operator is the so called

low mode preconditioning [104], which is supposed to help in the regime of quark

masses lighter than what we have used. Therefore, in this chapter we did not

include low mode preconditioning in the comparison. While for the overlap operator

even/odd preconditioning cannot be applied due to the polynomial approximation

of (Q†Q)−1/2, it can be used for the twisted mass operator to reduce the inversion

cost. See appendix B.1 for details on how to implement the inversion with even/odd

preconditioning.
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Figure 2.11: MVov/MVtm of the fastest available solver versus m2
PS[GeV2] for the two

volumes V = 124 and V = 164.

We are left to define which quantity we use in the comparison of the different

solvers and then also the two different operators. One application of Dtm is as

expensive as one application of its even/odd preconditioned version as well as one

application of the kernel of the overlap operator. Hence, it is natural to use the

number of those applications for the comparison. Of course, the different iterative

solvers have in general a different amount of additional linear algebra operations,

which could be included in the comparison by measuring the wall clock time needed

for the inversions. However, the latter measure is highly machine dependent and in

addition our experience shows that the number of operator applications (which we

will denote by matrix vector (MV) multiplications) is a sufficient criterion.

Our results clearly reveal that in case of the twisted mass operator the CG in

combination with even/odd preconditioning is the best choice in the whole range

of masses and for both the volumes we investigated here. For the overlap operator

the GMRESap is the fastest algorithm of the iterative solvers we considered, apart

from the simulation point with a 124 lattice volume and mPS = 230 MeV where the

CGχ,ap is the fastest.

For the fastest available solvers we plot in figure 2.11 the ratio of overlap kernel

applications MVov and applications the preconditioned twisted mass operator MVtm

versusm2
PS in physical units. Depending on the mass and the volume, the inversion of

the twisted mass operator is a factor 20 to 70 faster than the inversion of the overlap

operator at matched values of the pseudo scalar mass from 230 MeV to 720 MeV.

When the two different volumes are compared the overlap operator performs slightly
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better on the larger volume when compared to the twisted mass operator. But, of

course, for a definite conclusion we would need at least one additional volume.

2.5 Conclusion

In this chapter we presented a detailed scaling test in the quenched approximation

of the twisted mass lattice QCD formulation at maximal twist. To this end we have

computed several physical quantities in a range of lattice spacings between 0.17 fm

and 0.048 fm and pseudo scalar masses between 270 MeV and 1.2 GeV. In order

to work at full twist (ω = π/2) it is necessary to determine the critical value of

the hopping parameter κcrit. We have explored the pion definition and the PCAC

definition for this parameter in order to investigate the influence of these particular

choices on the lattice artifacts.

The results of our – quenched – study for the vector meson mass mV and the

pseudo scalar decay constant fPS are very encouraging. Our data strongly suggest

that in this setup the lattice spacing effects are substantially reduced with respect to

standard Wilson fermions and consistent with vanishing O(a) discretization errors.

This holds for both the pion definition and the PCAC definition of κcrit. Using the

PCAC definition of the critical mass the scaling region is found to start already at

(a/r0)
2 ≤ 0.06 for the observables investigated here, while for the pion definition this

region starts only at (a/r0)
2 ≤ 0.04. Moreover, the O(a2) artifacts remain small for

pseudo scalar masses down to 270 MeV when the PCAC definition is used, which is

not the case for the pion definition. However, at the two smallest quark masses, we

had to include for the pion definition a point at β = 6.45 in order to safely control

the continuum limit extrapolation.

In the case of fPS we have explicitly checked that both definitions of the critical

mass lead independently to consistent values in the continuum limit. Nevertheless,

for further simulations the PCAC definition of κc is clearly preferable as it leads to

considerably smaller lattice artifacts at small quark masses, allowing at the same

time for an enlargement of the scaling region.

We also investigated the flavor breaking effects in the twisted mass formulation.

Flavor symmetry is explicitly broken by the twisted mass term at finite values of the

lattice spacing. We have shown that the mass splitting between the neutral and the

charged pseudo scalar state is not small. But, as expected, the splitting vanishes

like a2 in the continuum limit.

In addition we confronted at one value of the bare coupling constant β = 5.85

results obtained with the overlap formulation with corresponding results obtained

with the twisted mass formulation of lattice QCD. We find that for the quanti-

ties investigated in this chapter the two formulations are compatible, in particular
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pseudo scalar masses smaller than 300 MeV can be reached with both formulations.

However, with a detailed test of various iterative solvers for both formulations we

could show that (quenched) simulations with the twisted mass formulation are a

factor of 20 to 70 faster than with the overlap formulation, depending on the mass

under consideration.

Therefore, the results of this chapter clearly reveal that mtmQCD allows for reli-

able simulations at pseudo scalar meson masses of about 270 MeV without running

into problems with exceptionally small eigenvalues. In addition lattice artifacts lin-

ear in a are absent and, when the PCAC definition of the critical mass is used, also

the residual lattice artifacts are small in the whole range of masses investigated here.

At the same time the costs are significantly less than what is needed for the overlap

formulation. In view of future dynamical simulations with light quark masses this

is, we think, a very important lesson.
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Chapter 3

Accelerating the Hybrid Monte

Carlo algorithm

In chapter 2 we have presented a scaling test of mtmQCD in the quenched approx-

imation with values of the pseudo scalar mass lower than 300 MeV. Of course, it

would be desirable to repeat such a study with two dynamical flavors of quarks and

light values of their masses, at least for a first study. But, unfortunately, simula-

tions with light dynamical quark flavors are by orders of magnitude more expensive

in terms of computer time than the corresponding simulations in the quenched ap-

proximation. The reason for this is basically that the generation of one gauge field

configuration is much more (O(100)) expensive and the gauge configurations depend

in full QCD on the values of the quark masses.

The Hybrid Monte Carlo (HMC) algorithm [75] is one widely used algorithm to

perform dynamical simulations. It is an exact algorithm, which combines molecular

dynamics evolution of the gauge fields with a Metropolis accept/reject step to correct

for discretization errors in the numerical integration of the corresponding equations

of motion. However, in its original form the HMC algorithm is even on computers

available today not able to tackle simulations with light quarks on fine lattices. Due

to increasing iteration numbers in the solvers and autocorrelation times the costs C

are expected to increase as [105]

C = K

(

mPS

mV

)−6

L5 a−7 ,

where mPS and mV are the pseudo scalar and the vector mass, L is the spatial lattice

extent and a the lattice spacing. The proportionality factor K was found to be too

large to allow for simulations with realistic mass values on fine lattices [105]. Hence,

during the last years a lot of effort has been invested to decrease K and to improve

the cost scaling behavior of the HMC. The list of improvements that were found

reaches, for instance, from even/odd preconditioning [106] over multiple time scale
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integration [107] to mass preconditioning (Hasenbusch acceleration) [108, 109], to

mention only those that are immediately relevant for the present work. It is worth

noting that many of the known improvement tricks can be combined. In addition,

alternative multi-boson methods [74] have been suggested, which, however, appear

not to be superior to the HMC algorithm, although they have conceptual advantages

compared to the HMC algorithm.

Recently in Ref. [110] a HMC variant as a combination of multiple time scale in-

tegration with domain decomposition as preconditioner with excellent scaling prop-

erties with the quark mass was presented. In addition, the value of K seems to

be significantly lower than for other HMC variants. Thus this algorithm can be

expected to be most promising when one wants to simulate small quark masses on

fine lattices.

In this chapter we are going to present yet another variant of the HMC algorithm

similar to the one of Refs. [111, 112] comprising multiple time scale integration with

mass preconditioning. We test this algorithm for standard Wilson fermions at β =

5.6 and at pseudo scalar masses ranging from mPS = 380 MeV to mPS = 670 MeV,

which are the simulation points of Ref. [110]. We show that in this situation the

algorithm has similar scaling properties and performance as the method presented

in Ref. [110]. From the performance data obtained with our HMC variant we find

that K is reduced and the scaling of the cost with the quark mass is improved when

compared to performance data available in the literature [105, 113, 114].

3.1 HMC algorithm

The variant of the HMC algorithm we will present here is applicable to a wide

class of lattice Dirac operators, including twisted mass fermions, various improved

versions, staggered fermions, and even the overlap operator. Nevertheless, in order

to discuss a concrete example, we restrict ourselves in this chapter to the Wilson-

Dirac operator (1-26) for nf = 2 flavors of mass degenerate quarks with Wilson

parameter r set to one. We do not expect that the algorithm properties depend

significantly on the particular choice of the Dirac operator.

Since DW (cf. Eq. (1-26)) fulfills the property γ5DWγ5 = D†
W it is convenient to

define the hermitian Wilson-Dirac operator

Q = γ5DW . (3-1)

After integrating out the fermion fields (cf. Eq. (1-15)) we have to deal with

det(DW)2 = det(Q2) in the simulations. This is usually done by re-expressing the

determinant with a Gaussian integral over bosonic fields φ, φ†:

det(DW)2 = det(Q)2 ∝
∫

Dφ†Dφ exp
(

−SPF[U, φ†, φ]
)

, (3-2)
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where SPF[U, φ†, φ] = |Q−1φ|2 is the so called pseudo fermion action. Formally the

φ-fields are identical to the matter fields ψ since they have the same degrees of

freedom, but follow the statistic of bosonic fields and are therefore called pseudo

fermion fields. The partition function (1-21) is then given by

Z =

∫

DU DφDφ† e−SG[U ]−SPF[U,φ,φ†] . (3-3)

In order to perform Monte Carlo simulations for this partition function the integral

over the pseudo fermion fields could be included in the important sampling process.

This is, however, not needed, since for a given gauge field

e−SPF[U,φ,φ†] = e−R
†R (3-4)

is a Gaussian distribution, which can be generated exactly. Therefore only the

gauge fields have to be generated in a Markov chain, which is implemented by the

Hybrid Monte Carlo algorithm. To set up the HMC algorithm [75] we introduce

traceless Hermitian momenta Px,µ as conjugate fields to the gauge fields Ux,µ and a

Hamiltonian

H(P, U, φ, φ†) =
1

2

∑

x,µ

P 2
x,µ + SG[U ] + SPF[U, φ, φ†] . (3-5)

The algorithm is then composed out of the following steps:

1. Global heat-bath for momenta and pseudo fermion fields.

The initial momenta are randomly produced according to a Gaussian distri-

bution exp(−P 2/2). Moreover, random fields R are produced from a distribu-

tion like exp(−R†R) and the initial pseudo fermion fields are computed with

φ = QR.

2. Molecular dynamics evolution.

Production of a proposal gauge configuration U ′ and proposal momenta P ′ by

molecular dynamics evolution (integrating Hamilton’s equations of motion) of

the gauge fields U and the momenta P at fixed pseudo fermion fields φ. If

the integration of the corresponding equations of motion can be performed

exactly, the Hamiltonian is conserved under this evolution.

3. Metropolis accept/reject step.

The proposals U ′ and P ′ are accepted with the probability min{1, exp(−∆H)},
where ∆H = H(P ′, U ′, φ, φ†)−H(P, U, φ, φ†).

This step is needed because the integration of the equations of motion can in

practice be done only numerically and hence an acceptance step is needed to

correct for discretization errors.
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If the integration scheme is reversible and area preserving it is possible to prove that

the HMC algorithm satisfies the detailed balance condition [75] and hence the HMC

algorithm is exact.

Since the Hamiltonian is conserved up to discretization errors, the integration

can be set up such that the acceptance rate is high while the gauge configurations

are globally updated.

3.1.1 Molecular dynamics evolution

In the molecular dynamics part of the HMC algorithm the gauge fields U and the

momenta P need to be evolved in a fictitious computer time t. With respect to t,

Hamilton’s equations of motion read

dU

dt
=
dH

dP
= P ,

dP

dt
= −dH

dU
= −dS

dU
, (3-6)

where we set S = SG + SPF and d/dU , d/dP formally denote the derivative with

respect to group elements. Since analytical integration of the former equations of

motion is normally not possible, these equations must in general be integrated with

a discretized integration scheme that is area preserving and reversible, such as the

leap frog algorithm. The discrete update with integration step size ∆τ of the gauge

field and the momenta can be defined as

TU(∆τ) : U → U ′ = exp (i∆τP )U ,

TS(∆τ) : P → P ′ = P − i∆τδS ,
(3-7)

where δS is an element of the Lie algebra of SU(3) and denotes the variation of S

with respect to the gauge fields. The computation of δS is the most expensive part

in the HMC algorithm since the variation of SPF reads

δSPF = −φ† 1

Q2
δ(Q2)

1

Q2
φ (3-8)

and thus involves the inversion of the Wilson-Dirac operator. With (3-7) one basic

time evolution step of the so called leap frog algorithm reads

T = TS(∆τ/2) TU(∆τ) TS(∆τ/2) , (3-9)

and a whole trajectory of length τ is achieved byNMD = τ/∆τ successive applications

of the transformation T .

3.1.2 Integration with multiple time scales

Consider a Hamiltonian of the form

H =
1

2

∑

x,µ

P 2
x,µ +

k
∑

i=0

Si[U ] , (3-10)
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with k ≥ 1. For instance, with k = 1 S0 might be identified with the gauge action

and S1 with the pseudo fermion action of Eq. (3-5).

Clearly, in order to keep the discretization errors in a leap frog like algorithm

small, the time steps have to be small if the driving forces are large. Then, if

the forces originating from the single parts in the Hamiltonian (3-10) differ signif-

icantly in their absolute values, it might be valuable to integrate the different Si
on time scales inverse proportionally deduced from the corresponding forces. This

will maximally improve the algorithm performance if the most expensive part can

be integrated with the largest molecular dynamics steps size.

The leap frog integration scheme can be generalized to multiple time scales as

has been proposed in Ref. [107] without loss of reversibility and the area preserving

property. The scheme with only one time scale can be recursively extended by

starting with the definition

T0 = TS0(∆τ0/2) TU(∆τ0) TS0(∆τ0/2) , (3-11)

with TU defined as in Eq. (3-7) and where TSi
(∆τ) is given by

TSi
(∆τ) : P → P − i∆τδSi[U ] . (3-12)

As ∆τ0 will be the smallest time scale, we can recursively define the basic update

steps Ti, with time scales ∆τi as

Ti = TSi
(∆τi/2) [Ti−1]

Ni−1 TSi
(∆τi/2) , (3-13)

with integers Ni and 0 < i ≤ k. One full trajectory τ is then composed by [Tk]
Nk .

The different time scales ∆τi in Eq. (3-13) must be chosen such that the total number

of steps on the i-th time scale NMDi
times ∆τi is equal to the trajectory length τ for

all 0 ≤ i ≤ k: NMDi
∆τi = τ . This is obviously achieved by setting

∆τi =
τ

Nk ·Nk−1 · ... ·Ni
=

τ

NMDi

, 0 ≤ i ≤ k , (3-14)

where NMDi
= Nk ·Nk−1 · ... ·Ni.

In Ref. [107] also a partially improved integration scheme with multiple time

scales was introduced, which reduces the size of the discretization errors. Again, we

assume a Hamiltonian of the form (3-10) with now k = 1. By defining similar to T0

TSW0
= TS0(∆τ0/6) TU(∆τ0/2) TS0(2∆τ0/3) TU(∆τ0/2) TS0(∆τ0/6) , (3-15)

the basic update step of the improved scheme – usually referred to as the Sexton-

Weingarten (SW) integration scheme – reads

TSW1 =TS1(∆τ1/6)

[TSW0
]N0 TS1(2∆τ1/3)

[TSW0 ]
N0 TS1(∆τ1/6) ,

(3-16)
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where ∆τ0 = ∆τ1/(2N0). This integration scheme not only reduces the size of the

discretization errors, but also sets for S0 a different time scale than for S1. Hence, it

is one special example for an integration scheme with multiple time scales and can

easily be extended to more than two time scales by recursively defining (0 < i ≤ k):

TSWi
=TSi

(∆τi/6)

[TSWi−1
]Ni−1 TSi

(2∆τi/3)

[TSWi−1
]Ni−1 TSi

(∆τi/6) .

(3-17)

The different time scales for the SW integration scheme are defined by

∆τi =
τ

(2Nk) · (2Nk−1) · ... · (2Ni)
=

τ

NMDi

, i ≤ k . (3-18)

Note that the SW partially improved integration scheme was originally invented to

make use of the fact that the computation of the variation of the gauge action is

cheap as compared to the variation of the pseudo fermion action and in addition

the time scales are chosen in order to cancel certain terms in the discretization error

exactly [107]. It can be generalized to integrators of the form

T2MN0 = TS0(λ∆τ0) TU(∆τ0/2) TS0((1− 2λ)∆τ0) TU(∆τ0/2) TS0(λ∆τ0) , (3-19)

with a real parameter λ that needs to be tuned [115], which are called second order

Minimal Norm (2MN) integration schemes. These schemes can be generalized to

multiple time scales in exactly the same way as the SW integration scheme. However,

we restrict ourselves in this work to the LF and the SW integration scheme only,

also because from the results of Ref. [115] we do not expect a large improvement of

2MN schemes when compared to the SW scheme.

3.2 Mass Preconditioning

The arguments presented in this section are made for simplicity only for the not

even/odd preconditioned Wilson-Dirac operator. The generalization to the even/odd

preconditioned case is simple and can be found in Ref. [108] and the appendix B.1.

Mass preconditioning [108] – also known as Hasenbusch acceleration – relies on

the observation that one can rewrite the fermion determinant as follows

det(Q2) = det(W+W−)
det(Q2)

det(W+W−)

=

∫

Dφ†
1Dφ1 Dφ†

2Dφ2 e
−φ†1

1
W+W− φ1−φ

†
2W

+ 1
Q2W

−φ2

=

∫

Dφ†
1Dφ1 Dφ†

2Dφ2 e
−SPF1

−SPF2 .

(3-20)
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The preconditioning operators W± can in principle be freely chosen, but in order

to let the preconditioning work W+W− should be a reasonable approximation of

Q2, which is, however, cheaper to simulate. Moreover, to allow for Monte Carlo

simulations, det(W+W−) must be positive. The generalized Hamiltonian (3-5) cor-

responding to Eq. (3-20) reads

H =
1

2

∑

x,µ

P 2
x,µ + SG[U ] + SPF1 [U, φ1, φ

†
1] + SPF2 [U, φ2, φ

†
2] , (3-21)

and it can of course be extended to more than one additional field.

Note that a similar approach was presented in Ref. [116], in which the intro-

duction of n pseudo fermion fields was coupled with the n-th root of the fermionic

kernel.

One particular choice for W± is to take for W+ and W− the one flavor compo-

nents of a two flavor twisted mass operator

W± = Q± iµ , (3-22)

which can be written as a two flavor operator as known from Eq. (1-47)

(

W+

W−

)

= γ5

[(

DW

DW

)

+ iµγ5τ3

]

(3-23)

One important property of this choice is that W+W− = Q2 + µ2 and that (W+)† =

W−. For small values of µ the product W+W− is certainly a reasonable approxi-

mation for Q2, but due to the mass shift µ2 it is cheaper to invert. We remark that

in general also Q itself can be a twisted mass operator.

In Ref. [109, 117] it was argued that the optimal choice for µ is given by µ2 =√
λmaxλmin. Here λmax (λmin) is the maximal (minimal) eigenvalue of Q2. The

reason for the above quoted choice is as follows: the condition number of Q2 + µ2 is

approximately λmax/µ
2 and the one of Q2/(Q2 + µ2) approximately µ2/λmin. With

µ2 =
√
λmaxλmin these two condition numbers are equal to

√

λmax/λmin, both of

them being much smaller than the condition number of Q2 which is λmax/λmin.

Since the force contribution in the molecular dynamics evolution is supposed to

be proportional to some power of the condition number, the force contribution from

the pseudo fermion part in the action is reduced and therefore the step size ∆τ can

be increased, in practice by about a factor of 2 [108, 109]. Therefore Q2 must be

inverted only about half as often as before and if the inversion of W+W−, which is

needed to compute δSPF1
, is cheap compared to the one of Q2 the simulation speeds

up by about a factor of two [108, 109].

One might wonder why the reduction of the condition number from K to
√
K

gives rise to only a speedup factor of about 2. One reason for this is that one cannot
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make use of the reduced condition number of Q2/(Q2 + µ2) in the inversion of this

operator, because in the actual simulation still the badly conditioned operator Q2

must be inverted to compute the variation of SPF2 = φ†
2
W+W−

Q2 φ2.

3.2.1 Mass preconditioning and multiple time scale integra-

tion

In the last subsection we have seen that mass preconditioning is indeed an effec-

tive tool to change the condition numbers of the single operators appearing in the

factorization (3-20) compared to the original operator. But, this reduction of the

condition numbers only influences the forces and not the number of iterations to

invert the physical operator Q2.

Therefore, it might be advantageous to change the point of view: instead of

tuning the condition numbers in a way à la Refs. [108, 109] we will exploit the

possibility of arranging the forces by the help of mass preconditioning with the

aim to arrange for a situation in which a multiple time scale integration scheme is

favorable, as explained at the beginning of section 3.1.2.

The procedure can be summarized as follows: use mass preconditioning to split

the Hamiltonian in different parts. The forces of the single parts should be adjusted

by tuning the preconditioning mass parameter µ such that the more expensive the

computation of δSPFi
is, the less it contributes to the total force. This is possible

because the variation of (Q2 + µ2)/Q2 is, for |µ| < 1, (formally) reduced by a factor

µ2 compared to the variation of 1/Q2. In addition, W+W− = Q2+µ2 is significantly

cheaper to invert than Q2. Then integrate the different parts on time scales chosen

according to the magnitude of their force contribution.

The idea presented in this chapter is very similar to the idea of separating infrared

and ultraviolet modes as proposed in Ref. [118]. This idea was applied to mass

preconditioning by using only two time scales in Refs. [111, 112] in the context of

clover improved Wilson fermions. However, a comparison of our results presented

in the next section to the ones of Refs. [111, 112] is not possible, because volume,

lattice spacing and masses are different.

3.3 Numerical results

3.3.1 Simulation points

In order to test the HMC variant introduced in the last sections, we decided to

compare it with the algorithm proposed and tested in Ref. [110]. To this end we

performed simulations with the same parameters as have been used in Ref. [110]:
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κ mq [MeV] mPS [MeV] mV [MeV] r0/a

A 0.1575 66(3) 665(17) 947(20) 6.04(10)

B 0.1580 34(1) 485(13) 836(24) 6.18(07)

C 0.15825 22(1) 380(17) 839(33) 6.40(15)

Table 3.1: The (un-renormalized) quark mass mq, the pseudo scalar mass mPS and the

vector mass mV are given in in physical units at the three simulation points A, B and

C. We use Wilson fermions at β = 5.6 on 243 × 32 lattices. The scale was set by the

use of r0 = 0.5 fm and we give the value of r0/a at each simulation point. The values of

all the quantities agree within the errors with the numbers quoted in Refs. [110, 68, 114],

apart from the value for r0/a at simulation point B, which disagrees by two sigmas to the

value quoted in Ref. [68]. This is presumably due to the different methods to measure

this quantity. For the measurements we used at each simulation point 100 thermalized

configurations separated by 5 trajectories.

Wilson-Dirac operator with plaquette gauge action at β = 5.6 on 243 × 32 lattices.

We have three simulation points A, B and C with values of the hopping parameter

κ = 0.1575, κ = 0.1580 and κ = 0.15825, respectively. The trajectory length was

set to τ = 0.5. The details of the physical parameters corresponding to the different

simulation points can be found in table 3.1. Additionally, this choice of simulation

points allows at the two parameter sets A and B a comparison to results published

in Ref. [114], where a HMC algorithm with a plain leap frog integration scheme was

used.

In addition to the three simulation points A, B and C we have one additional

point D with κ = 0.15835. According to Ref. [119] this value of κ corresponds to a

pseudo scalar mass of about 294 MeV. Unfortunately, the history of our run is too

short to be really conclusive, nevertheless we will use run D to get a preliminary

idea of the performance of our algorithm towards even smaller quark and pseudo

scalar masses.

3.3.2 Details of the implementation

We have implemented a HMC algorithm for two flavors of mass degenerate quarks

with even/odd preconditioning and mass preconditioning with up to three pseudo

fermion fields (cf. appendix B.1 on page 109). The boundary conditions are periodic

in all directions apart from anti-periodic ones for the fermion fields in time direction.

For the gauge action the usual Wilson plaquette gauge action (1-25) is used. The

implementation is written in C and uses double precision throughout.

For the mass preconditioning we use

W±
j = γ5(DW[U,m0]± iµjγ5) , (3-24)
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with j = 1, 2 for the factorization in Eq. (3-20), where the µj are the additional

(unphysical) twisted mass parameters. Therefore, the pseudo fermion actions SPFj

are given by

SPFj
[U ] =































φ†
1

(

1
W+

1 W
−
1

)

φ1 j = 1 ,

φ†
j

(

W+
j−1W

−
j−1

Q2

)

φj j = NPF ,

φ†
j

(

W+
j−1W

−
j−1

W+
j W

−
j

)

φj otherwise ,

(3-25)

where we always chose µj > 0 and µj+1 > µj for all values of j. NPF denotes the

actually used number of pseudo fermion fields.

We have implemented the leap frog (LF) and the Sexton-Weingarten (SW) in-

tegration schemes with multiple time scales each as described by Eq. (3-13) and

Eq. (3-17), respectively, where k in both equations has to be identified with NPF.

The time scales are defined as in Eq. (3-14) for the LF integration scheme and as

in Eq. (3-18) for the SW scheme, with N0 corresponding to the gauge action and Nj

to SPFj
for NPF ≥ j > 0. Note that for the LF integration scheme for one trajectory

there are NNPF
· . . . ·Nj + 1 inversions of the corresponding operator needed, while

for the SW integration scheme there are 2NNPF
· . . . · 2Nj + 1 inversions needed.

For the inversions we used the CG and the BiCGstab iterative solvers. As

reported in section 2.4.1 the CG iterative solver is best suited for the even/odd

preconditioned twisted mass operator. Thus we used for all inversions of mass pre-

conditioning operators exclusively the CG iterative solver.

For the pure Wilson-Dirac operator DW the BiCGstab iterative solver is known

to perform best [120]. In case of dynamical simulations, however, usually the squared

hermitian operator needs to be inverted and in this case the CG is comparable to

the BiCGstab. Only in the acceptance step, where γ5DW (or rather the even/odd

preconditioned version of it) needs to be inverted to a high precision, the usage of

the CG would be wasteful. For this work we used the BiCGstab iterative solver for

all inversions of either the pure Wilson-Dirac operator itself or (γ5DW)2.

The accuracy in the inversions was set during the computation of δSPFj
to ǫj ,

which means that the inversions were stopped when the approximate solution ψj of

Ajψj = φj fulfills
‖φj −Ajψj‖
‖φj‖

≤ ǫj ,

where Aj denotes the operator corresponding to SPFj
. During the inversions needed

for the acceptance step the accuracy was set to ǫ̃ = 10−10 for all pseudo fermion

actions. The inversions in the acceptance step must be rather precise in order not

to introduce systematic errors in the simulation, while for the force computation the

precision can be relaxed as long as the reversibility violations are not too large. The
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Int. NPF Ntherm N{0,1,2,3} ǫ1, ǫ2, ǫ3 µ1, µ2 Pacc

A SW 3 600 3, 2, 1, 3 10−7, 10−8, 10−8 0.29, 0.057 0.86

B SW 3 1000 3, 2, 1, 3 10−8, 10−8, 10−8 0.25, 0.057 0.81

C LF 2 1500 5, 6, 10, - 10−8, 10−8, - 0.054, - 0.80

Table 3.2: HMC algorithm parameters for the three simulation points. We give the inte-

gration scheme, the number of pseudo fermion fields NPF, the number Ntherm of trajectories

of length 0.5 used to thermalize the systems, the number Ni of molecular dynamics steps

for the multiple time scale integration scheme, the residues ǫi used in the solver for the force

computation, the preconditioning mass parameter µi and the acceptance rate. We remind

that N0 corresponds to the gauge action.

values of ǫj and ǫ̃ have been set such that the reversibility violations, which should

be under control [121, 122, 123, 124], are on the same level as reported in Ref. [110],

which means that the differences in the Hamiltonian are of the order∗ of 10−5. The

values for ǫj can be found in table 3.2.

The errors and autocorrelation times were computed with the so called Γ-method

as explained in section 1.4.3, Eq. (1-103) on page 33 and in Ref. [78] (see also

Ref. [77]).

3.3.3 Force contributions

The force contributions to the total force from the separate parts in the action we

label by FG for the gauge action and by Fj for the pseudo fermion action SPFj
. Since

the variation of the action with respect to the gauge fields is an element of the Lie

algebra of SU(3), we used ‖X‖2 = −2 TrX2 as the definition of the norm of such

an element.

In order to better understand the influence of mass preconditioning on the HMC

algorithm we computed the average and the maximal norm of the forces FG, F1, F2

and F3 on a given gauge field after all corresponding gauge field updates:

‖F‖aver =
1

4L3T

∑

x,µ

‖F (x, µ)‖ ,

‖F‖max = max
x,µ
{‖F (x, µ)‖} ,

(3-26)

and averaged them over all measurements, which we indicate with 〈.〉. Examples of

force distributions for different runs can be found in figure 3.1. These investigations

lead to the following observations generic to our simulation points:

∗In case of 80% acceptance rate the average value of
√

∆H2 is about 0.1. Therefore, a reversibil-

ity violation of the order 10−5 is supposed to be safe.
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Maximal force
Average force〈‖F (x, µ)‖〉

FG F1 F2 F3

10

1

0.1

0.01

(a) Forces for run B.

Maximal force
Average force〈‖F (x, µ)‖〉

FG F1 F2

10

1

0.1

0.01

(b) Forces for run C.

Figure 3.1: Average and maximal forces for simulation points B and C. The statistical

errors are too small to be visible due to the large number of measurements.

• With the choice of parameters as given in table 3.2 the single force contribu-

tions are strictly hierarchically ordered with

‖FG‖aver,max > ‖F1‖aver,max > ‖F2‖aver,max > ‖F3‖aver,max.

• The maximal force is up to one order of magnitude larger than the average

force. This can only be explained by large local fluctuations in this quantity.

These fluctuations become larger the smaller the mass is.

Moreover, the force ordering and sizes look very similar to the one reported in

Ref. [110].

In a next step we performed some test trajectories without mass preconditioning

in order to compare the fermionic forces with and without mass preconditioning.

For the value of κ = 0.15825 (run C) the result can be found in figure 3.2. The

bars labeled with F correspond to the fermion force without mass preconditioning.

The labels F1 and F2 refer to the two fermionic forces for the run C with mass

preconditioning. The following ratios are of interest:

‖F‖aver
‖F1‖aver

≈ 1 ,
‖F‖aver
‖F2‖aver

≈ 42 ,

‖F‖max

‖F1‖max

≈ 1.3 ,
‖F‖max

‖F2‖max

≈ 29 .

These ratios show that the average and maximal norm of F2 is strongly reduced

compared to the average and maximal norm of F . We observe that the maximal
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Maximal force
Average force〈‖F (x, µ)‖〉

F F1 F2

10

1
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Figure 3.2: Comparison between the fermionic forces of run C (F1 and F2) and a run with

κ = 0.15825 without mass preconditioning and multiple time scales (F ). The statistical

errors are too small to be visible.

norm is slightly less reduced than the average norm and, by varying µ1, we could

confirm that the norm (average and maximal) of F2 is roughly proportional to µ2
1.

As a further observation, one sees from figure 3.2 or from the ratios quoted above

that the norm of F1 is almost identical to the norm of F , which is the case for both

the average and the maximal values.

From these investigations we think one can conclude the following: in the first

place it is possible to tune the value of µ1 (and possibly µ2) such that the most

expensive force contribution of F2 (or F3) to the total force becomes small. Secondly,

since in the example above the force contributions for F and F1 are almost identical

– even though the masses are very different – we conclude that the norm of the

forces does not explain the whole dynamics of the HMC algorithm. For this point

see also the discussion in the next subsection.

3.3.4 Tuning the algorithm

As mentioned already in section 3.2.1 the tuning of the different mass parameters

and time scales could become a delicate task. Therefore we decided to tune the

parameters µ1 and possibly µ2 such that the molecular dynamics steps number

NNPF
for the LF or 2NNPF

for the SW integration scheme – the number of inversions

of the original Wilson-Dirac operator in the course of one trajectory – is about the

same as the corresponding values in Ref. [110]. The values we have chosen for the

mass parameters µi and the step numbers Ni can be found in table 3.2 and one can
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κ Nmeas 〈P 〉 τint(P )

A 0.1575 740 0.57250(3) 6(2)

B 0.1580 1020 0.57339(3) 7(2)

C 0.15825 905 0.57384(4) 10(4)

Table 3.3: For the three runs this table contains the number of measurements for the pla-

quette Nmeas, the mean plaquette expectation values and the corresponding autocorrelation

times.

see by comparing to Ref. [110] that the step numbers Ni (or 2Ni) are indeed quite

similar.

The computation of the variation of SG is, compared to the variations of the

other action parts, almost negligible in terms of computer time. Therefore we set N0

always large enough to ensure that the gauge part does not influence the acceptance

rate negatively and we leave the gauge part out in the following discussion.

If one compares e.g. for simulation point C the average norm of the fermionic

forces, then one finds that it increases like 1 : 40 (‖F2‖ : ‖F1‖). The maximal

norm of the forces is accordingly strongly ordered, approximately like 1 : 20. The

corresponding relations in the step numbers we had to choose (see the values in

table 3.2) increase only like 1 : 6.

This indicates that the norm of the forces can indeed serve as a first criterion to

tune the time scales and the preconditioning masses, by looking for a situation in

which ∆τi‖Fi‖max is a constant independent of i. But, it cannot be the only criterion.

Finally, the acceptance rate is determined by 〈exp(−∆H)〉, which depends in a more

complicated way on the forces, see e.g. Ref. [125].

It is well known that simulations with the HMC algorithm in particular for

small quark masses become often unstable if the step sizes are too large. It is an

important result that with the choice of parameters as can be found in table 3.2 our

simulations appear to be very stable down to quark masses of the order of 20 MeV.

We did encounter only few large, but not exceptional, fluctuations in ∆H during

the runs. A typical history of ∆H and the average plaquette value can be found in

figure 3.3 for run C. Note that even a pion mass of about 380 MeV might be still

to large to observe the asymptotic behavior of the algorithm.

All our runs reproduce the average plaquette expectation values quoted in Ref. [110]

and, where available, in Ref. [114] within the statistical errors. Our results together

with the number of measurements Nmeas and the integrated autocorrelation time

can be found in table 3.3. We also measured the values of the pseudo scalar, the

vector and the current quark mass and our numbers agree within errors with the
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(a) Monte Carlo history of ∆P .
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(b) Monte Carlo history of ∆H .

Figure 3.3: Monte Carlo histories of the deviation ∆P of the average plaquette from its

mean value and of ∆H , both for simulation point C.

values quoted in Refs. [110, 114]. These measurements were done on 100 configu-

rations separated by 5 trajectories at each simulation point and we computed the

aforementioned quantities with the methods explained in section 1.3. In order to

improve the signal we used Jacobi smearing and random sources. Our results in

physical units can be found in table 3.1. Note that the value for mV at simulation

point C has to be taken with some caution, because the lattice time extend was a

bit too small to be totally sure about the plateau.

In order to set the scale we determined the Sommer parameter r0/a [59] as

defined and explained in section 1.3.4 on page 28. For our calculation of r0/a in this

chapter we used the HYP static action† [64, 66], the tree-level improved force and

potential [59] and we enhanced the overlap with the ground state of the potential

using APE smeared [60] spatial gauge links. The results can be found in table 3.1.

For run A and B our values for r0/a agree very well within the errors with the value

quoted in Ref. [68, 69]. One should keep in mind, however, that the values for r0/a

are computed on rather low statistics‡.

3.3.5 Algorithm performance

Any statement about the algorithm performance has to include autocorrelation

times. Since different observables can have in general rather different autocorre-

lation times, also the algorithm performance is observable dependent. However, in

the following we will use the plaquette integrated autocorrelation time τint(P ) to

determine the performance.

†First results applying an improved static action in the computation of the static potential

already appeared in [63, 69].
‡The computation of the values for r0/a was performed by A. Shindler and U. Wenger.
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κ ν ν from [110] ν from [114]

A 0.15750 0.09(3) 0.69(29) 1.8(8)

B 0.15800 0.11(3) 0.50(17) 5.1(5)

C 0.15825 0.23(9) 0.28(9) -

Table 3.4: Values of the cost figure ν compared to the corresponding values of Refs. [110]

and [114], where available.

The values we measured for τint(P ) can be found in table 3.3. It is interesting to

observe that for runs A and B the values for τint(P ) are smaller than the one found

for the domain decomposition method. An explanation for this may be that in the

algorithm of Ref. [110] a subset of all link variables is kept fixed during the molecular

dynamics evolution, while in our HMC variant all link variables are updated.

Our value for τint(P ) for run A is almost identical to the corresponding one

found in Ref. [114]. In contrast, for simulation point B our value is a factor of three

smaller, which is – we think – partly due to the significantly smaller acceptance rate

of about 60% quoted in Ref. [114] for this point and partly due to the algorithmic

improvements presented in this chapter.

A measure for the performance of the pure algorithm, which is implementation

and machine independent, but incorporating the autocorrelation times is provided

by the cost figure

ν = 10−3(2n+ 3)τint(P ) (3-27)

that has been introduced in Ref. [110]. n in Eq. (3-27) stands for either NNPF
in

case a LF integration scheme is used or 2NNPF
in case a SW integration scheme is

used. ν represents the average number of inversions of the Wilson-Dirac operator

with the physical mass in units of thousands as needed to generate a statistically

independent value of the average plaquette. Hence, in giving values for ν, we neglect

the overhead coming from the remaining parts of the Hamiltonian.

Our values for ν together with the corresponding numbers from Ref. [110] and

Ref. [114] are given in table 3.4. Compared to Ref. [110] our values for ν are smaller

for simulation points A and B and comparable for run C. In contrast, the cost

figure for the HMC algorithm with plain leap frog integration scheme is at least a

factor 10 larger than the values found for our HMC algorithm variant. This gain

is, of course, what we aimed for by combining multiple time scale integration with

mass preconditioning and hence confirms our expectation. Unfortunately, due to

the large statistical uncertainties of the ν values it is not possible to give a scaling

of the cost figure with the mass. This holds for our values of ν as well as the ones

of Ref. [110].
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NMV τint(P ) ·∑NMV

SPF1 SPF2 SPF3 this work Ref. [114]

A 3800 4600 6600 90000 190750

B 6000 6900 11900 173600 1280000

C 31000 25500 - 565000 –

Table 3.5: Rounded number of matrix vector multiplications needed during one trajectory

of length 0.5 for the different pseudo fermion actions without the usage of a chronological

solver guess. We give also the sum of our numbers multiplied by the plaquette autocorrela-

tion time and as a comparison the corresponding number from Ref. [114], where available.

3.3.6 Simulation cost

Although the value of ν is a sensible performance measure for the algorithm itself,

since it is independent of the machine, the actual implementation and the solver, it

cannot serve to estimate the actual computer resources (costs) needed to generate

one independent configuration. Assuming that the dominant contribution to the

total cost stems from the matrix vector (MV) multiplications, we give in table 3.5 the

average number of MV multiplications NMV needed for the different pseudo fermion

actions to evolve the system for one trajectory of length τ = 0.5. In addition we give

the sum of these MV multiplications multiplied with the plaquette autocorrelation

time together with the corresponding number from Ref. [114].

In order to compare to the numbers of Ref. [114] we remark that the lattice

time extent is T = 40 in Ref. [114] compared to T = 32 in our case, but we

do not expect a large influence on the MV multiplications coming from this small

difference. Large influence on the MV multiplications, however, we expect from

ll-SSOR preconditioning [126] that was used in Ref. [114] in combination with a

chronological solver guess (CSG) [127].

Initially, when one compares the values of the cost figure for our HMC algorithm

with the one of the plain leap frog algorithm as used in Ref. [114], one might expect

that the number of MV multiplications shows a similar behavior as a function of

the quark mass. However, inspecting table 3.5, we see that in terms of MV multi-

plications at simulation point A the HMC algorithm of Ref. [114] is only a factor

of 2 slower than the variant presented in this chapter, while the values of ν are by

a factor of about 20 different. The reason for this is two-fold: On the one hand

ll-SSOR preconditioning together with a CSG method is expected to perform better

than only even/odd preconditioning. On the other hand we think that the quark

mass at this simulation point is still not small enough to gain significantly from

multiple time scale integration. This illustrates that indeed the value of ν is not
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immediately conclusive for the actual cost of the algorithm.

At simulation point B the relative factor between the MV multiplications needed

by the two algorithms is already about 7. And finally, it is remarkable that for

simulation point C the costs with our HMC variant are still a factor of 2 smaller

than the costs for simulation point B with the algorithm used in Ref. [114], even

though the masses are very different.

From this comparison we conclude that especially in the regime of small quark

masses the HMC algorithm presented in this work is significantly faster than a HMC

algorithm with single time scale leap frog integration scheme.

By looking at table 3.5 one notices that especially for simulation point C the

number of MV multiplications needed for preconditioning is larger than the one

needed for the physical operator. This comes from the fact that with the choice of

algorithm parameters we have used the number of molecular dynamics steps for the

mass preconditioned operator is large. This possibly indicates potential to further

improve the performance by tuning the preconditioning masses and time scales.

We stress here again that the number of matrix vector operations is highly solver

dependent, and therefore, every improvement to reduce the solver iterations will

decrease the cost for one trajectory. Promising improvements are for instance the

use of a chronological inversion method [127] (or similar methods [128]) or the use

of a solver based on domain decomposition as adopted for QCD in Ref. [129]. We

tested the chronological inversion method and found in total not more than 20%

gain in matrix vector operations.

Finally, it is interesting to compare the number of matrix vector multiplications

reported in table 3.5 with a HMC algorithm where mass preconditioning and multi-

ple time scale improvements are switched off and CSG is not used. For instance for

a simulation with a Sexton-Weingarten improved integration scheme at κ = 0.15825

there are 120 molecular dynamics steps needed to get acceptance. This corresponds

to 240 inversions of Q2, which amounts to about 720000 matrix vector multiplica-

tions. Compared to run C this is at least a factor 10 more. We did only a few

trajectories to get an estimate for this number, so we cannot say anything about

autocorrelation time.

Of course it would be interesting to compare also to a HMC algorithm with mass

preconditioning but without multiple time scale integration. This, however, needs

again a tuning of the mass parameters and would therefore be quite costly and we

did not attempt to test this situation here.
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(a) Comparison to Ref. [114].
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Figure 3.4: Computer resources needed to generate 1000 independent configurations of

size 243 × 40 at a lattice spacing of about 0.08 fm in units of Tflops · years as a function of

mPS/mV. In (a) we compare our results represented by squares to the results of Ref. [114]

represented by circles. The lines are functions proportional to (mPS/mV)−4 (dashed) and

(mPS/mV)−6 (solid) with a coefficient such that they cross the data points corresponding

to the lightest pseudo scalar mass. The diamond represents the preliminary result of run D

(see text). In (b) we compare to the formula of Eq. 3-28 [105] (solid line) by extrapolating

our data with (mPS/mV)−4 (dashed) and with (mPS/mV)−6 (dotted), respectively. The

arrow indicates the physical pion to rho meson mass ratio. Additionally, we add points

from staggered simulations as were used for the corresponding plot in Ref. [113]. Note that

all the cost data were scaled to match a lattice time extend of T = 40.

3.3.7 Scaling with the mass

An important property of an algorithm for lattice QCD is the scaling of the costs

with the simulated quark mass. The naive expectation is that the number of solver

iterations grows like m−1
q and also the number of molecular dynamics steps is pro-

portional to m−1
q , see for instance Ref. [130] or Ref. [105]. Since also the integrated

autocorrelation time is assumed to grow like m−1
q , it is expected that the HMC al-

gorithm costs scale with the quark mass as m−3
q or equivalently as m−6

PS. In contrast,

for our HMC algorithm variant we expect a much weaker scaling of ∆τ and also of

the number of solver iterations. Indeed, we see that the costs for our HMC algorithm

variant is consistent with a m−2
q or m−4

PS behavior when the autocorrelation time is

taken into account.

We have translated the number of matrix vector multiplications from table 3.5

into costs in units Tflops ·years and plotted the computer resources needed to gener-

ate 1000 independent configurations of size 243×40 at a lattice spacing of ∼ 0.08 fm
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as a function of mPS/mV in figure 3.4(a) together with the results of Ref. [114]. Note

that we have scaled our costs like (40/32)1.25 corresponding to the expected volume

dependence (cf. [105]) to match the different time extents and, moreover, we used

the plaquette autocorrelation time as an estimate for the autocorrelation time.

The solid (dashed) line is not a fit to the data, but a function proportional

to (mPS/mV)−4 ((mPS/mV)−6) with a coefficient that is fixed by the data point

corresponding to the lightest pseudo scalar mass. These functional dependencies on

(mPS/mV) describe the data reasonably well. However, from our few data points it

is not possible to decide on the value of the exponent in the quark mass dependence

of the costs. But, it is clear from the figure that with multiple time scale integration

and mass preconditioning the “wall” – which renders simulations at some point

infeasible – is moved towards smaller values of the quark mass.

An additional indication for the scaling properties of the algorithm towards

smaller masses is given by the preliminary result of run D. It is represented in

figure 3.4(a) by the single diamond. For this point we used our current number

of MV multiplications as measured for run D and the value for mPS as given in

Ref. [119]. Moreover, we extrapolated the value amV in κ and the value of τint in

1/m2
PS. The result as we plot it in the figure thus has certainly a significant error.

Nevertheless, even if the “true” result will be a factor of two larger, the point is still

in excellent agreement with the anticipated scaling proportional to (mPS/mV)−4.

On a larger scale we can compare the extrapolations of our cost data to the

formula given in Ref. [105]

C = K

(

mPS

mV

)−zπ

LzL a−za , (3-28)

where the constant K can be found in Ref. [105] and zπ = 6, zL = 5 and za = 7. The

result of this comparison is plotted in figure 3.4(b), which is an update of the “Berlin

Wall” figure that can be found in Ref. [113]. We plot the simulation costs in units of

Tflops ·years versus mPS/mV, where we again scaled the numbers in order to match

a lattice time extend of T = 40. The dashed and the dotted lines are extrapolations

from our data proportional to (mPS/mV)−4 and (mPS/mV)−6, respectively, again

matching the data point corresponding to the lightest pseudo scalar mass. The

solid line corresponds to Eq. (3-28) with K taken from Ref. [105]. In addition we

plot data from staggered simulations as were used for the plot in Ref. [113]. That

the corresponding points lie nearly on top of the dotted line is accidental.

Conservatively one can conclude from figure 3.4(b) that with the HMC algorithm

described in this chapter at least simulations with mPS/mV ≈ 0.3 are feasible, even

though L = 1.93 fm is too small for such values of the masses. Taking the more

optimistic point of view by assuming that the costs scale with zπ = 4, even simulation
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with the physical mPS/mV ratio and a lattice spacing of 0.08 fm become accessible,

with again the caveat that L/a needs to be increased.

Independent of the value for zπ, figure 3.4(b) reveals that the costs for simulations

with staggered fermions and with Wilson fermions in a comparable physical situation

are of the same order of magnitude, if for the simulations with Wilson fermions an

algorithm like the one presented in this work is used. It would be interesting to

see whether the techniques applied in this work perform similarly well for staggered

fermions.

We would like to point out that we did not try to tune the parameters to their

optimal values. The aim of this work was to give a first comparison of mass precondi-

tioned HMC algorithm with multiple time scale integration to existing performance

data, i.e. data for a HMC algorithm preconditioned by domain decomposition [110]

and data for the HMC algorithm variant of Ref. [114]. We are confident that there

are still improvements possible by further tuning of the parameters in our variant

of the HMC algorithm.

3.4 Conclusion

In this chapter we have presented and tested a variant of the HMC algorithm com-

bining multiple time scale integration with mass preconditioning (Hasenbusch ac-

celeration). It is based on the idea to arrange mass preconditioning such that the

force contributions from the different parts in the Hamiltonian are strictly ordered

with respect to the absolute value of the force and that the most expensive part has

the smallest contribution to the total force. Then the most expensive part can be

integrated on the largest time scale.

Our aim was to perform a first investigation of the performance properties of this

HMC algorithm by comparing it to other state of the art HMC algorithm variants

in the same physical situation, i.e. for pseudo scalar masses in the range of 380

to 670 MeV, a lattice spacing of about 0.08 fm and a lattice size of L ≈ 2 fm with

two flavors of mass degenerate Wilson fermions. We verified our implementation by

comparing results for the plaquette and for the pseudo scalar, the vector and the

current quark mass to results available in the literature finding full agreement.

We have shown that indeed the aforementioned idea can be realized by tuning

the additional (unphysical) mass parameters introduced for mass preconditioning.

In this set-up the performance of our variant in terms of the cost figure in Eq. (3-27)

is compatible to the one observed for the HMC algorithm with multiple time scales

and domain decomposition as preconditioner introduced in Ref. [110] and clearly

superior to the one for the HMC algorithm with a simple leap frog integration

scheme as used in Ref. [114].
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While the cost figure provides a clean algorithm performance measure we also

compare the simulation costs in units of Tflops · years to existing data. This com-

parison is summarized in an update of the “Berlin wall” plot of Ref. [113], which

can be found in figure 3.4. We could show that with the HMC algorithm presented

in this chapter the wall is moved towards smaller values of the quark mass and that

simulations with a ratio of mPS/mV ≈ 0.3 become feasible at a lattice spacing of

around 0.08 fm and L ≈ 2 fm. We have preliminary results for a simulation point

with a pseudo scalar mass of around 300 MeV and mPS/mV ≈ 0.3, which is in excel-

lent agreement with all the results mentioned above. In particular this simulation

point seems to confirm that the algorithm costs scale proportional to (mPS/mV)−4.

The HMC variant presented here has the advantage of being applicable to a

wide variety of Dirac operators, including in principle also the overlap operator. In

addition its implementation is straightforward, in particular in an already existing

HMC code. We remark that the parallelization properties of our HMC variant

and the one of the algorithm presented in [110] can be very different depending on

whether a fine- or a coarse-grained massively parallel computer architecture is used.

From a stability point of view our results reveal that even for Wilson fermions it

is very well possible to simulate quark masses of the order of 20 MeV when using the

algorithmic ideas presented in this work. The presently ongoing simulation with even

smaller quark mass is also running without any practical problems, but the statistics

is not yet adequate to say something definite. However, it is a remarkable result by

itself that there are now at least two algorithms available allowing for stable simula-

tions with Wilson fermions at low values of the quark masses. Remarkable, because

only short time ago this was thought to be hardly possible and it immediately raises

the question for an explanation: one can speculate that the observed stability is

mainly due to noise reduction provided by the additional pseudo fermion fields and

former simulations yielded problems, because the stochastic approximation for the

determinant was not sufficient.

The results presented in this chapter are mostly based on empirical observations

and on simulations for only one value of the coupling constant β = 5.6. It remains to

be seen how our HMC variant behaves for larger values of β, which, as well as smaller

quark masses and theoretical considerations about the scaling properties with the

quark mass needs further investigations. Moreover, a more systematic study of the

interplay between integration schemes, step sizes, (preconditioning and physical)

masses and the simulation costs is needed. Those investigations will hopefully also

provide a better understanding of the algorithm itself and its dynamics. Of course,

the algorithm should also be tested for tmQCD, even though we do not expect a

large difference to the pure Wilson case.

Finally, we think that there are further improvements possible by the usage of a

Polynomial HMC (PHMC) algorithm [131, 132, 133, 134]. With such an algorithm
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one could treat the lowest eigenvalues of the Dirac operator exactly and/or by re-

weighting. In this set-up the large fluctuations in the force might be significantly

reduced, if the lowest eigenvalues are responsible for those. Then it might be possible

to further reduce the number of inversions of the badly conditioned physical operator

needed to evolve the system. In addition, a PHMC algorithm would immediately

allow for simulations with three or more flavors of quarks.
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Chapter 4

Phase structure of lattice QCD

Understanding the phase structure of lattice QCD is an important pre-requisite

before starting large scale simulations [113]. As we will see below, the main result

of this chapter is that Wilson type fermions generically show a first order phase

transition around the chiral point for lattice spacings below a certain threshold.

The existence of this first order phase transition, which is due to lattice artifacts,

has important consequences for simulations with this kind of lattice fermions.

First, approaching the “physical point”, at which the pion mass assumes its

value as measured in experiment, the algorithms used in lattice simulations suffer

from a substantial slowing down, as explained in the previous chapter. Since simu-

lations are also restricted to finite lattice spacings, lattice QCD in general involves

extrapolations to the physical point and to the continuum. In order to be able to

control those extrapolations it is necessary to know whether there is indeed a smooth

extrapolation possible.

Second, numerical simulations in the vicinity of first or second order phase tran-

sitions are problematic. It is not obvious whether the algorithms correctly sample

configuration space in such a situation. And, assuming they do so, usually one

observes practical problems such as long thermalization and autocorrelation times.

Therefore, as – unlike the finite temperature case – the phase transition itself is not

the topic under investigation, one would like to avoid to simulate close to a phase

transition.

It is important to realize that the above mentioned first order phase transition

for Wilson type lattice fermions imposes a lower bound on the value of the pseudo

scalar mass that can be simulated at a given lattice spacing. The actual value of

the lower bound to the pseudo scalar mass, however, turns out to depend on the

particular gauge action discretization providing an opportunity to circumvent or at

least reduce the aforementioned complications.

We remark that strictly speaking in a finite volume with a finite number of lattice

83



CHAPTER 4. PHASE STRUCTURE OF LATTICE QCD

points there cannot exist a phase transition. Nevertheless, already in a finite, but

large enough volume the effects of a phase transition in infinite volume can be visible

and rather strong.

For QCD it is widely believed that chiral symmetry is spontaneously broken by

the ground state and one expects a first order phase transition where the scalar con-

densate jumps from negative to positive value when the mass is changed from small

negative to small positive values, or vice versa. In this chapter we are going to dis-

cuss in lattice chiral perturbation theory how the explicit chiral symmetry violations

of Wilson type fermions at non-vanishing lattice spacing will affect the continuum

picture, which will allow an interpretation of our numerical results. Thereafter, we

will present our numerical results on the phase structure of lattice QCD in a regime

of lattice spacings where so far a systematic study was missing. These results will

provide evidence for a first order phase transition, as mentioned before. Finally, we

will outline how to reduce the effects of this phase transition by choosing a different

discretization of the gauge part in the action.

4.1 Effective potential model

As we have discussed in section 1.2.2, the massless Lagrangian of QCD for two

flavors of quarks is symmetric under the chiral group SUV (2) × SUA(2), which is

spontaneously broken down to SUV (2) by the ground state of the theory. To de-

scribe reality the Lagrangian contains a quark mass term explicitly breaking the

aforementioned symmetry. Therefore the vector and axial currents are not exactly

conserved.

However, since the masses of up- and down-quark are small, also the divergence

of the currents vanishes approximately and the masses might be treated as a small

perturbation to the massless theory as is done in the chiral perturbation theory

(χPT) [135, 136, 137]. From a principle point of view lattice calculations include

all the low energy structure of QCD with the quark masses being free parameters.

Therefore, there is a priori no need for a χPT if expectation values can be computed

on the lattice on a non-perturbative level at realistic values of the quark mass.

However, nowadays lattice calculations are not yet able to provide reliable results

obtained with values of the quark masses as small as estimated in experiment.

Hence, χPT might serve as an useful tool to connect the results for physical

quantities obtained from lattice simulations performed at un-physically large quark

masses with those at the physical point. However, χPT is valid only for small quark

masses below a certain upper bound or in different words it has a finite convergence

radius, which allows to make contact to lattice calculations if and only if lattice

simulations with masses below this bound are possible. The actual value of this
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bound is unknown, but lattice simulations with pion masses below 300 MeV will

most likely be needed.

As originally χPT is an effective low energy theory of continuum QCD, it is

not valid at finite values of the lattice spacing a. However, one can also formulate

an effective theory including the lattice spacing, which is then treated as a small,

additional parameter.

4.1.1 Chiral perturbation theory on the lattice

In section 1.2.3 we have introduced the Symanzik effective theory, which is expected

to describe the lattice theory close to the continuum by an effective continuum

Lagrangian. The usual terms in the continuum Lagrangian are supplemented by

contributions proportional to powers of the lattice spacing. We have also discussed

in section 1.2.3 that the effective fermionic Lagrangian is of the form (see Eq. (1-44))

Leff ∼ ψ̄(γµDµ +m)ψ + cswaψ̄iσµνFµνψ +O(a2) . (4-1)

This amounts to QCD with a Pauli term. And since the Pauli term transforms under

chiral rotations exactly like a mass term [41], the corresponding chiral Lagrangian

is already known.

We will not discuss lattice χPT (LχPT) in detail, as it can for instance be found

for Wilson lattice QCD in [138], but we rather follow the qualitative discussion of

reference [41] to immediately access the phase structure of lattice QCD at small

quark masses.

In terms of a SU(2) matrix-valued field Σ, transforming under independent SU(2)

rotation UL and UR as Σ→ ULΣU
†
R the kinetic part (which is the chiral Lagrangian

in absence of mass and Pauli term) can be written as

Lχ =
f 2
π

4
Tr
(

∂µΣ†∂µΣ
)

, (4-2)

and the potential energy is given by

Vχ = −c1
4

Tr
(

Σ + Σ†
)

+
c2
16

{

Tr
(

Σ + Σ†
)}2

(4-3)

with coefficients c1 ∼ mΛ3
QCD +aΛ5

QCD and c2 ∼ m2Λ2
QCD +maΛ4

QCD +a2Λ6
QCD. The

factors or ΛQCD are required by dimensional analysis and dimensionless coefficients

of order unity are dropped [41]. In the following we will be particularly interested

in the case where m′ = m − aΛ2
QCD ∼ a2Λ3

QCD. In this regime the coefficients can

be simplified to

c1 ∼ m′Λ3
QCD , c2 ∼ a2Λ6

QCD . (4-4)
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In this situation the two terms in the potential energy become comparable, since

c1 ∼ c2, and it will lead to the prediction of a non-trivial phase structure of Wilson

lattice QCD for small quark masses. Moreover, the coefficient c1 parameterizes the

bare quark mass and c2 is proportional to a2.

By denoting with A the flavor singlet component of Σ, the latter can be expressed

like

Σ = A + i

3
∑

r=1

Brτr , (4-5)

with 1 = A2+
∑

BrBr and τr the three Pauli matrices. This constrains A, which cor-

responds to the scalar condensate, to lie between −1 and 1 inclusive. The potential

then reads

Vχ = −c1A + c2A
2 = A(c2A− c1) . (4-6)

Note that B3 corresponds to 〈ψ̄γ5τ3ψ〉.
In order to find the ground state Σ0 the effective potential has to be minimized.

Σ can then be expanded around Σ0 and observables like pion masses can be extracted

in terms of the quark mass, c2 and the pion decay constant fπ. And it turns out that

the results depend strongly on the sign of the coefficient c2, which parameterizes the

lattice artifacts.

In case of positive c2 there exists a phase in the region of bare quark masses

defined by −2c2 < c1 < 2c2 where the flavor symmetry is broken. This expresses

itself in massless charged pions, because they are Goldstone bosons of spontaneous

flavor symmetry breaking, but a massive uncharged pion.

At the boundaries c1 = ±2c2 all three pions are massless and the system un-

dergoes a second order phase transition, while outside the phase with (|c1| > 2c2)

the flavor symmetry is preserved by the ground state and all three pions are mas-

sive. This scenario is called the Aoki scenario, because S. Aoki first predicted the

existence of such a flavor symmetry breaking phase [139, 140, 141].

The alternative is that c2 is negative. In this case the flavor symmetry is preserved

in the whole range of values for c1, but it does not exist a value of c1 where the pions

are massless, since the pion masses are given by [41]

m2
π =

1

f 2
π

(|c1|+ 2|c2|) . (4-7)

At c1 = 0 the vacuum expectation value of Σ jumps from A = −1 to A = +1. Since

this jump appears at non-zero pion mass the thermo-dynamical description of the

behavior near c1 = 0 corresponds to a first order phase transition.

This situation is called normal scenario due to its similarity to the continuum

first order chiral phase transition around zero quark mass. In the continuum, of

course, the pions as Goldstone bosons become massless in the chiral point in contrast
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to a non-zero minimal value of the pion mass characterizing the normal scenario on

the lattice.

The minimal value of the squared pion mass is in LχPT for vanishing value of

c1 proportional to c2, which is of O(a2). This means, if a negative value of c2 is

realized in Wilson lattice QCD the minimal value of m2
π will vanish like a2 when the

continuum limit is performed. On the other hand, if the Aoki scenario is realized,

the width of the Aoki phase will vanish like ∆m ∼ a3 [41]. Unfortunately LχPT by

itself is not able to make any prediction about the sign of c2.

Although the just discussed phase structure for Wilson lattice QCD from LχPT

is known already quite some time [41], the corresponding investigation for the Wil-

son twisted mass formulation of lattice QCD was missing. It was published in

Refs. [142, 97, 143] only after we published parts of the results that will be pre-

sented in this chapter. The introduction of a twisted mass term in the low energy

effective Lagrangian turns out to be straightforward. The only difference is one

additional term in the effective potential energy

Vχ = −c1A− c3B3 + c2A
2 . (4-8)

The new coefficient c3 ∼ µ is parameterizing the twisted mass in the effective theory

while the other coefficients are given as in the former discussion. If we now consider

values of m′ ∼ µ ∼ a2Λ3
QCD we again have to distinguish between negative and

positive values of c2. The sign of c3 depends on the value of µ, which we choose to

be positive, since it does not influence the qualitative picture of the phase structure.

6

-

µ

mv v
Figure 4.1: Phase diagram in the m− µ plane for the Aoki scenario.

For c2 > 0 and µ 6= 0 fixed the Aoki scenario changes as follows: charged

and uncharged pions are massive for all values of c1, even though the flavor SU(2)

symmetry is explicitly broken. The value A changes continuously as a function

of c1 and there is no phase transition. The situation for c2 > 0 is summarized

schematically in figure 4.1. For µ = 0 the two second order phase transition points

are indicated by the filled circles. On the line between these two circles the charged

pions are massless and the uncharged pion is massive. Note that this line corresponds

to a first order transition line where B3 jumps when the values of µ sweep across

zero.
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(a) Jump in Σ for c1 = 0.
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(b) Phase diagram in the µ − m

plane.

Figure 4.2: Phase diagram and jump in Σ for the normal scenario (c2 < 0).

In the case of c2 < 0 the influence of a non-zero value for the twisted mass

parameter µ is different. Here µ plays the rôle of a “magnetic field” and shifts away

the minimum of the potential Vχ from the values A = ±1. As indicated in figure

4.2(a) B3 adopts a non-zero value and |A| < 1. With increasing modulus of µ the

two minima of the potential approach each other and the transition line has an

endpoint for

µc ∼ a2 . (4-9)

For µ 6= 0 flavor and parity symmetry are explicitly broken and at µ = µc the un-

charged pion becomes massless while the charged pions remain massive. At c1 = 0

and µ < µc a first order phase transition takes place. The corresponding phase dia-

gram is schematically represented in figure 4.2(b), where we indicate the endpoints

of the first order transition line at µc by filled circles.

Before turning to a numerical check of LχPT it is useful to summarize what was

known in the literature so far about the phase structure of Wilson lattice QCD. In

a recent re-investigation [144, 145] of the Aoki phase with the Wilson gauge action

for values of the coupling β < 5 the authors found in agreement with previous

publications [146, 141, 147, 148, 149] evidence for an Aoki phase only for values of

β < 4.6. On the other hand, for values of β = 4.6 and β = 5 they found no evidence

for the realization of an Aoki scenario.

For values of β > 5 (Wilson plaquette gauge action), however, a systematic

investigation of the phase structure was missing. Even though there exist several

indications in the literature (see for instance [150]) for the realization of the normal

scenario in this region of β values the connection to the aforementioned results from

LχPT was never explicitly mentioned.
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4.2 Numerical results

4.2.1 Simulation points

We have chosen three values of the bare coupling constant β to study the phase

structure of lattice QCD with Wilson plaquette gauge action and Wilson twisted

mass fermions. The simulation parameters can be found in table 4.1. The values of

aµ were chosen such that r0µ is roughly constant for all values of β. Moreover, the

lattice sizes were taken to have a physical volume of at least 2 fm in order to allow

for save extraction of meson physics.

The values of the lattice spacing quoted in table 4.1 are estimates to give an

orientation. At β = 5.2 we have in addition to the lattice size quoted in table 4.1

results for 163 × 32 lattices to check for finite volume effects.

β L3 × T aµ a [fm]

5.1 123 × 24 0.013 0.20

5.2 123 × 24 0.010 0.16

5.3 163 × 32 0.008 0.14

Table 4.1: Simulation points for Wilson plaquette gauge action.

For the next subsections we will mainly concentrate on the results obtained at

β = 5.2, because the results are qualitatively the same for the three values of β.

After this description of the first order phase transition phenomenon we will in a next

step analyze also the scaling with the lattice spacing. For all these investigations

we used the hopping parameter representation of the Wilson twisted mass lattice

action in the twisted basis as given by Eq. (1-46).

4.2.2 Thermal cycles

We started our investigation of the phase diagram of zero temperature lattice QCD

by performing thermal cycles in κ while keeping fixed β = 5.2 and the value of the

twisted mass parameter aµ. These cycles are performed such that a starting value of

κstart is chosen and then κ is incremented, without performing further intermediate

thermalization sweeps, until a final value of κfinal is reached. At this point the

procedure is reversed and κ is decremented until the starting value κstart is obtained

back. At each value of κ 150 configurations are produced and averaged over.

In fig. 4.3 we show three such thermal cycles, performed at aµ = 0, aµ = 0.01

and aµ = 0.1 from bottom to top. In the cycles signs of hysteresis effects can

be seen for aµ = 0 and aµ = 0.01 while for the largest value of aµ = 0.1 such
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Figure 4.3: Thermal cycles in κ on 83× 16 lattices at β = 5.2. The plaquette expectation

value is shown for aµ = 0.1, aµ = 0.01 and aµ = 0 (top to bottom). The triangles refer to

increasing κ-values, the diamonds to decreasing ones. The errors are the naive statistical

errors, without taking the autocorrelation time into account.

effects are hardly visible. Hysteresis effects in thermal cycles may be signs of the

existence of a first order phase transition. However, they should only be taken as

first indications. Nevertheless, they provide most useful hints for further studies to

search for meta-stable states.

4.2.3 Meta-stabilities

Guided by the results from the thermal cycles, we next performed simulations at

fixed values of aµ and κ, starting with ordered and disordered configurations, staying

again at β = 5.2. In fig. 4.4 we show the Monte Carlo time evolution of the plaquette

expectation value, in most cases on a 123 × 24 lattice. For several values of κ we

find coexisting branches with different average values of the plaquette. The gap (the

“latent heat”) appears to be rather large. At κ = 0.1717 we show the history of the

plaquette expectation value also on a larger (163 × 32) lattice. It seems that the

gap in the plaquette expectation value does not depend much on the lattice size,

suggesting that the meta-stability we observe here is not a finite volume effect. In

most cases the twisted mass is aµ = 0.01, except for the picture right in the upper
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123 × 24, β = 5.2, κ = 0.1717, aµ = 0.01

〈P 〉

tHMC

12008004000

0.55

0.53

0.51

0.49

123 × 24, β = 5.2, κ = 0.1715, aµ = 0.0

〈P 〉

tHMC

12080400

0.55

0.53

0.51

0.49

163 × 32, β = 5.2, κ = 0.1717, aµ = 0.01
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Figure 4.4: Meta-stable states at β = 5.2. The plaquette value is plotted as a function of

the HMC time, i.e. the number of trajectories. The lattice size is 123 × 24 except for the

bottom figure where it is 163 × 32. The value for the twisted mass parameter is aµ = 0.01

except for the rightmost figure where it is aµ = 0.

line where it is aµ = 0. Since the meta-stabilities are also observed with aµ = 0 it

is already excluded that the phenomenon is only due to the twisted mass term.

The lifetime of a meta-stable state, i.e. the time before a tunneling to the stable

branch occurs, depends on the algorithm used. In fact, one may wonder, whether the

appearance of the meta-stable states seen in fig. 4.4 may not be purely an artefact

of our algorithms. We cannot completely exclude this possibility but we believe it is

very unlikely: we employed two very different kinds of algorithms in our simulations

as explained in subsection 1.4.2. We observe the meta-stable states with both, the

HMC and the TSMB algorithm. We also inter-changed configurations between the

two algorithms: a configuration generated with algorithm A was iterated further

with algorithm B and vice versa. We find that in such situations the plaquette

expectation value remains in the state where it has been before the interchange of

configurations took place. In addition, as we shall see below, the two states can be

characterized by well defined and markedly different values of basic physical quan-

tities. We therefore conclude that the meta-stable states are a generic phenomenon

of lattice QCD in the Wilson or Wilson twisted mass formulation. This conclusion

is strongly supported by the fact that it is consistent with the picture provided by
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Figure 4.5: The pseudo scalar mass squared in lattice units as a function of 1/(2κ) on two

lattice sizes measured separately on configurations in the two (meta)stable states. These

runs were performed at β = 5.2 and aµ = 0.01.

LχPT, which we discussed in section 4.1.1.

4.2.4 Pseudo scalar and quark masses

While in the preceding paragraph we looked at the plaquette expectation value

indicating a first order phase transition we will discuss this phenomenon in the

following paragraph in terms of pseudo scalar and quark masses. To this end we

selected separately configurations with high and with low plaquette expectation

value and measured the pseudo scalar mass mPS and the untwisted PCAC quark

mass mPCAC
χ , which we obtained as explained in section 1.3.

In fig. 4.5 we show the pseudo scalar mass squared in lattice units as a function

of 1/(2κ). We observe that the pseudo scalar mass is rather large and the most

striking effect in the graph is that it can have two different values at the same

κ value. Moreover, the minimal value of the pseudo scalar mass is not zero, but

assumes a rather large value.

If we consider the quark mass mPCAC
χ in fig. 4.6, we see that in the states with

a low plaquette expectation value the mass is positive while for high values of the

plaquette expectation it is negative. These quark masses with opposite sign coexist

for some values of κ.

Figs. 4.4-4.6 clearly reveal that for small enough values of µ meta-stabilities show

up in the quantities we have investigated, such as mPS, m
PCAC
χ and the average

plaquette, if m0 is close to its critical value. What “small enough µ” means is
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Figure 4.6: The PCAC quark mass mPCAC
χ in lattice units as defined in Eq. (1-80) as

a function of 1/(2κ) on two lattice sizes measured separately on configurations in the two

(meta)stable states. The values of β = 5.2 and aµ = 0.01 are fixed.

likely to change with β, see below. As a matter of fact, when m0 is significantly

larger (smaller) than mcrit we find mPCAC
χ to be positive (negative) and no signal of

meta-stabilities.

Of course, one might ask the question how we can know that the values of m0 are

close to its critical value, since we do not observe any value for m0 where mPCAC
χ = 0.

The answer to this question is that – as argued already above – in a finite volume

there exist no phase transition and therefore, mPCAC
χ must be an analytical function

of m0. Only due to the disability of the algorithm to correctly sample configuration

space in this region of m0 values, we get the impression (on the remnant) of a

first order phase transition. Analyticity in turn implies that in the region of meta-

stabilities an optimal algorithm would find a value of m0 where mPCAC
χ = 0, which

is, however, a finite volume effect: in infinite volume physical observables such as

mPCAC
χ jump at the phase transition point and hence, mPCAC

χ does not become zero.

The chiral point is then defined at the phase transition point.

The remark that meta-stabilities take place for m0 close to its critical value is

important for the interpretation of the observed phenomenon. As we explained in

section 4.1, LχPT predicts two different scenarios for the phase structure at small

quark masses. The so called normal scenario is characterized as follows: firstly, a first

order phase transition appears when the untwisted quark mass sweeps across zero

as long as the twisted mass parameter is smaller than a critical value µc. Secondly,

the pseudo scalar mass has a minimal value that is larger than zero.
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As meta-stabilities are expected to take place in the vicinity of a first order

phase transition, we therefore conclude that at this value of β the normal scenario

is realized.

Even though we discussed in this subsection only one value of β, the same phe-

nomenon appears for β = 5.1 and for β = 5.3: we observe meta-stabilities and a

non-zero value of the minimal pseudo scalar mass. In order to simplify the language,

we denote simulation points in the phase with high plaquette expectation value with

“high”, and correspondingly the simulation points with low plaquette expectation

value with “low”.

The dependence of the phase transition on the lattice spacing will be the topic

of the following subsection.

4.2.5 The phase transition as a function of the lattice spac-

ing

As mentioned already before, we have apart from β = 5.2 also simulation points

with β = 5.1 and β = 5.3. The details for all our simulation points can be found in

tables 4, 5, and 6 of Ref. [151]. The values of aµ were fixed for each β value such

that r0µ ≈ 0.03 for all values of β. Note that the value of r0/a depends on the value

of the quark mass and therefore, we had to choose a reference value for r0/a. We

have chosen this reference point to have (r0mPS)
2 = 1.5 and interpolated our data

for β = 5.1 and β = 5.3 to this point, while for β = 5.2 a short extrapolation was

necessary. We again used the ROOT and MINUIT packages from CERN to perform

the corresponding fits. The parameters are summarized in table 4.1.

In figure 4.7 we have plotted the plaquette expectation value 〈P 〉 as a function

of 1/(2κ) for the three values of β. The β-dependence shows that the gap in the

plaquette expectation value ∆P decreases substantially when moving from β = 5.1

(a ≈ 0.20 fm) to β = 5.3 (a ≈ 0.14 fm). One possible definition for the quantity

∆P is the difference between low and high phase plaquette expectation value at the

smallest value of κ where a meta-stability occurs. Moreover, one can see in figure 4.7

that the meta-stability region in 1/(2κ) gets narrower with increasing values of β.

Other quantities than ∆P show a similar behavior. Also the gap in mPCAC
χ between

positive and negative values shrinks significantly with increasing values of β.

We remark that the first order phase transition exists also in the continuum limit

where it occurs as the jump of the scalar condensate as a consequence of spontaneous

chiral symmetry breaking. Of course, in the continuum limit, the phase transition

occurs only for µ = 0 and the jump in 〈P 〉 will disappear.

An interesting practical question is, at what value of the lattice spacing a the

minimal pseudo scalar mass mmin
PS that can be simulated without meta-stability as-
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β r0/a r0µ ∆P mmin
PS [MeV]

5.1 2.497(29) 0.0327 0.0399(1) & 600

5.2 3.124(85) 0.0312 0.0261(1) & 630

5.3 3.628(60) 0.0290 0.0077(4) & 470

Table 4.2: Reference values for r0/a together with r0µ, the plaquette gap ∆P and mmin
PS

for the three β values.

sumes a value of, say, 300 MeV. At such a value contact to χPT could be established.

Unfortunately, the precise determination of the meta-stability region in κ and of a

minimal pseudo scalar mass is very difficult. We can estimate the meta-stability

region in κ from our data by including all κ values where meta-stabilities occur. A

lower bound for the minimal pseudo scalar mass in the low plaquette phase (high

plaquette phase) is then represented by the value of mPS at the lower (higher) end

of this κ interval. In the following we will mainly focus on the low plaquette phase

since this is the natural choice for studying lattice QCD.

We give in table 4.2 estimates for the minimal pseudo scalar masses in the low

plaquette phase in physical units. In addition, we provide estimates for ∆P . In

principle, it would be the natural next step to extrapolate the minimal pseudo scalar

mass and ∆P as a function of the lattice spacing. However, our present data do

not allow for a reliable and safe extrapolation. First of all, the determination of the

minimal pseudo scalar mass has a large ambiguity in itself since we do not know for

sure, which simulation point is stable or meta-stable. Second, the only three values

of β we have used give a too short lever arm to perform a trustworthy extrapolation.

And, last, the values of r0/a are very different in the two phases, which makes it

particularly difficult to follow ∆P as a function of the lattice spacing, since ∆P

contains information from both phases.

Nevertheless, an estimate on a more qualitative level yields a value of the lattice

spacing of a ∼ 0.07 fm − 0.1 fm where simulations with pseudo scalar masses of

about 300 MeV can be performed without being affected by the first order phase

transition∗.

At this point we can complete the picture of the phase structure of lattice QCD

with Wilson type quarks. It is schematically plotted in figure 4.8 in the β-µ-κ-space

on the basis of the predictions of LχPT and the numerical findings as presented in

this section and in the literature. For values of β smaller than about five it was

found that the Aoki scenario is realized [144, 145]. The phase is located around

the critical value of κ, its width in κ diminishes with increasing values of β and, as

∗We remark that we have indications for meta-stabilities even at the parameters of run D from

the last chapter, i.e. a ∼ 0.08 fm, µ = 0 and mPS ∼ 300 MeV. However, this might turn out to be

a thermalization phenomenon.
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Figure 4.7: Evolution of the gap in the plaquette expectation value for the three values of

β.

discussed in section 4.1, the Aoki phase disappears for non-vanishing values of µ.

The resulting area is plotted in dark-gray in figure 4.8. On the boundaries of this

area a second order phase transition takes place.

Since the first order phase transition in the normal scenario takes place for κ

equal to its critical value and values of |µ| smaller than the critical value µc, the

corresponding area of first order phase transition points is orthogonal to the Aoki

phase area. It is plotted in light-gray in figure 4.8. As discussed in section 4.1 the

value of µc goes to zero as a2 when the continuum limit is approached. Therefore

the width of the first order phase transition area gets correspondingly smaller. On

the boundary of this area are second order endpoints located.

In the region of β values between the two scenarios there are no data available

describing how the crossover exactly looks like. The design of this crossover as it

is plotted in figure 4.8 is a guess under the assumption that the two scenarios do

not exist in parallel for the same set of parameters and that the crossover is smooth

in β. However, this brings the discussion to the question how reliable predictions

of LχPT are, when the lattice spacing is larger than 0.15 fm. If LχPT to order a2

would explain the phase structure for the whole above mentioned range of lattice

spacings, the sign of c2 must change as a function of β.

We cannot answer this question, even though we think that it is very likely that

higher order lattice artefacts contribute significantly to the phase structure if the

lattice spacing is large. These higher order effects could then also avoid the necessity

of a sign change in c2, because the crossover can then be explained by higher order

lattice artifacts.

Finally, let us discuss the implications of the observed phase structure on simu-

lations in lattice QCD with Wilson like fermions. First of all the understanding of
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Figure 4.8: Schematic phase-diagram of Wilson twisted mass lattice QCD. The light-gray

surface is the area where a first order phase transition takes place (c2 < 0) when κ is

crossing its critical value. At the boundary of this area a second order endpoint is located.

The dark-gray area is the parameter region where the Aoki scenario is realized (c2 > 0). At

the border line of this area a second order phase transition takes place. At the value of β

where the two areas touch each other, c2 is supposed to be identically zero.

the phase structure is (or should be) an important pre-requisite for any large scale

simulation in lattice QCD, a piece of information that was missing so far.

Unfortunately, from an only practical point of view the actual phase structure

makes simulations with Wilson gauge action and Wilson like fermions difficult, if

not unfeasible. The reason is the following: due to the meta-stability phenomenon

simulations with pseudo scalar masses of the order of 300 MeV must be performed

with lattice spacings of a<∼ 0.1 fm and correspondingly large volumes in lattice

units. To perform then a reliable continuum extrapolation simulations with at least

two even smaller lattice spacings with the same physical volumes are needed. All

together large scale simulations in this setup become rather demanding, and are

therefore not realistic.

Note that in the two dimensional Gross-Neveu model [152] it is possible to

compute the phase structure analytically. Depending on the parameters the out-

come is very similar to the phase structure as observed for Wilson lattice QCD

[153, 154, 155, 156].
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(a) High plaquette phase.
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(b) Low plaquette phase.

Figure 4.9: Eigenvalues λ of the Wilson twisted mass fermion matrix with small absolute

value in case of the Wilson plaquette action at β = 5.2, µ = 0.01, κ = 0.1715 on a 123 × 24

lattice. Both high plaquette and low plaquette spectra are shown.

4.2.6 Changing the gauge action

As explained above we think that simulations with Wilson plaquette gauge action

and Wilson like fermions are not feasible due to the existence of the first order phase

transition. This is of course a rather un-satisfactory result and a cure is needed if

one wants to stick to Wilson twisted mass fermions in order to use the automatic

O(a) improvement property of mtmQCD.

If one compares the infra-red end of the eigenvalue spectrum of the twisted mass

operator at identical parameters, but on gauge configurations from the high and the

low plaquette phase separately as we show it in figure 4.9†, one can see that the

first order phase transition is visible as a strong difference in infra-red spectrum.

Therefore, the phase structure might be influenced by changing the infra-red eigen-

value spectrum, which is well known to be possible by changing the discretization

of the gauge action (see for instance [157, 158, 159, 160]). In fact, the JLQCD col-

laboration reported in Refs. [150, 161] for lattice QCD Nf = 3 non perturbatively

improved flavors of quarks that the meta-stability phenomenon disappears when the

Iwasaki gauge action [162, 163] or the tadpole improved Symanzik gauge action [13]

is used instead of the Wilson plaquette gauge action.

In order to check the effect of changing the gauge action on the phase structure

our collaboration performed simulations with two additional gauge actions: the

DBW2 gauge action [164, 165] and the tree level Symanzik (tlSym) improved gauge

†In the figure one can nicely see the eigenvalue free strip around the real axis, which is due to

the twisted mass term serving as an infra-red cut-off to the spectrum.
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action [166, 167]. Both of these belong to a one-parameter family of gauge actions

and include, besides the usual (1 × 1) Wilson plaquette term, planar rectangular

(1× 2) Wilson loops:

Sg =
∑

x

(

c0

4
∑

1≤µ<ν;µ,ν=1

1

3
{1− ReTr(U2)}

+c1

4
∑

µ6=ν;µ,ν=1

1

3
{1−Re Tr(U1×2

x,µ,ν)}
)

,

(4-10)

with the normalization condition c0 = 1− 8c1. (The notation c0, c1 is conventional.

c1 should not be confused with the parameter c1 in the effective potential model).

The coefficient c1 in Eq. (4-10) takes different values for the two choices of gauge

actions mentioned above:

c1 =

{

−1.4088 DBW2 gauge action

−1/12 tlSym gauge action .
(4-11)

Clearly, c1 = 0 corresponds to the original Wilson plaquette gauge action. Note that

the value of c1 = −0.331 corresponds to the Iwasaki gauge action [162, 163].

The c1 value for the DBW2 gauge action was determined by renormalization

group considerations. The value of c1 = −1/12 corresponds to the value computed

at tree level in order to improve the gauge action à la Symanzik. Thus, the tlSym

gauge action is in between the DBW2 and the Wilson plaquette gauge action, even

though the numerical value of c1 suggests that it is closer to the Wilson gauge action.

Our collaboration obtained very promising results for the DBW2 gauge action,

which are published in Ref. [168]. If we tune the parameters with the DBW2 gauge

action such that the lattice spacings are comparable to the one measured with Wilson

plaquette gauge action at β = 5.2, we find that the strength of the phase transition

is significantly reduced. Moreover, for even smaller lattice spacings, in a situation

now comparable to the one with Wilson plaquette gauge action at β = 5.3, we do

not find evidence for a first order phase transition. For the tlSym gauge action the

investigations are still ongoing, but the preliminary results are similar to the one

observed with the DBW2 gauge action. We summarize the results in figure 4.10,

where we show the plaquette expectation value as a function of κ for the DBW2, the

tlSym and the Wilson plaquette gauge action at approximately the same value for

a = 0.2 fm. For all of the three actions meta-stabilities are visible. The value of aµ

was only for the Wilson plaquette gauge action different from zero, which should,

however, decrease the effect for the plaquette gauge action.

Passing in figure 4.10 from the Wilson over the tlSym to the DBW2 gauge action

the jump in the plaquette expectation value becomes clearly smaller. In addition,
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Figure 4.10: Plaquette expectation values as a function of κ for the three different gauge

actions at approximately identical value of the lattice spacing a = 0.2 fm. For the DBW2

and the tlSym gauge action the value of µ was identical zero, whereas for the Wilson gauge

action we used aµ = 0.013. The continuous lines only connect the points and are meant to

guide the eyes. The meta-stable region is indicated by connecting high and low phase at

the first and the last meta-stable point.

the difference between DBW2 and tlSym is much smaller than the difference between

tlSym and Wilson plaquette. This outcome, if confirmed, is surprising, since one

could expect the effect to “scale” with c1.

Nevertheless, these results make us confident that changing the gauge action is

indeed a tool to weaken the effects of the first order phase transition, in agreement

with earlier findings [150, 161]. With a different gauge action than the Wilson

plaquette gauge action dynamical simulation with twisted mass fermions at maximal

twist might then become possible with lattice spacings equal or lower than 0.16 fm

and pseudo scalar masses small enough.

4.3 Conclusion

The main result of this chapter is that close enough to the continuum the phase

structure in lattice theories with Wilson or Wilson twisted mass fermions is the

expected continuum phase structure of QCD distorted by lattice artifacts.

In detail, we have explored the phase structure of lattice QCD with Wilson

twisted mass fermions and the Wilson plaquette gauge action. We have investigated

three values of the bare coupling β = 5.1, 5.2, 5.3 each with fixed value of aµ. By

changing the hopping parameter κ we encountered strong meta-stabilities for all

three values of β, visible in long living meta-stable states with either a low or a high
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plaquette expectation value. The PCAC quark mass mPCAC
χ in the different meta-

stable branches is positive for the branch with low plaquette expectation value and

negative for the branch with high plaquette expectation value. At the same time,

the pseudo scalar mass does not vanish at the chiral point but has a minimum at

a rather large value, which is at β = 5.3 still about 500 MeV. We stress here that

the aforementioned lower bound for the pseudo scalar mass does not originate from

algorithmic or technical problems, but it is a physical property of the lattice theory.

In fact, it would be interesting to investigate the phase structure of lattice QCD

with different formulations, such as the staggered or even the overlap formulation.

This phenomenon finds a natural interpretation in the effective potential model

from lattice chiral perturbation theory, both for pure Wilson fermions with µ = 0

[41] and for Wilson twisted mass fermions with µ 6= 0 [142, 97, 143]: the so-called

normal scenario with a first order phase transition and a non-vanishing pseudo scalar

mass at the chiral point is realized for the β value that we investigated.

We clearly observe that this first order phase transition weakens substantially,

when β is increased. Unfortunately, we cannot quantitatively locate the value of the

lattice spacing, where the effects of the first order phase transition becomes negligible

and where a minimal pseudo scalar mass of, say, 300 MeV can be reached. As an

estimate of such a value of the lattice spacing we give a ≈ 0.1 fm. Of course, this

would mean that a continuum extrapolation of physical results obtained on lattices

with linear extent of at least L = 2 fm would be very demanding, since the starting

point for such simulations would already require large lattices. It is therefore very

important to find alternative actions such that the value of the lattice spacing can

be lowered without running into problems with the first order phase transition.

With our results together with results available in the literature we were able

to draw a schematic picture of the phase structure of lattice QCD with Wilson

like fermions. While for values of β smaller than 5.0 there is evidence for the Aoki

scenario, in the range of β values between 5.1 and 5.3 we find evidence for the normal

scenario. The phase diagram is summarized in fig. 4.8.

Our collaboration also investigated the change of the observed phase structure

with two different gauge actions to replace the Wilson plaquette gauge action. These

are the DBW2 and the tree level Symanzik improved gauge actions, both of which

belong to a one-parameter family of gauge actions. The results we obtain are very

promising in a sense that it seems to become possible to reduce significantly the

effects of the first order phase transition at lattice spacings comparable to the one

used in this chapter (see Ref. [168] for details). This makes us confident that indeed

with a different gauge action than the Wilson plaquette gauge action dynamical sim-

ulations with automatic O(a) improved Wilson twisted mass fermions are feasible.

Finally, we remark that in the twisted mass formulation also non-degenerate
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quark flavors can be simulated without loosing the property of automatic O(a)

improvement [169, 46]. Together with the twisted mass parameter serving as an

infra-red cut-off for the eigenvalue spectrum, the twisted mass formulation then

becomes a promising candidate for large scale simulations with dynamical up-, down-

and strange quark.
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In the year 2003 an intriguing paper was published: Frezzotti and Rossi realized

that with the Wilson twisted mass formulation of lattice QCD at maximal twist

O(a) improvement can be obtained without the need of additional improvement

coefficients [42], which need to be computed non-perturbatively in the standard

Symanzik improvement programme. Of course, such a theoretical proposition needs

a check in practice and hence we performed a scaling test of maximally twisted mass

QCD (mtmQCD), in the quenched approximation as a start. The results can be

found in chapter 2 and the most important findings are the following:

• thanks to the twisted mass term playing the rôle of an infrared cut-off for the

Dirac operator eigenvalue spectrum, it is possible to simulate pseudo scalar

masses as low as 270 MeV without having problems with exceptional configu-

rations.

• physical observables determined with mtmQCD show no O(a) lattice artifacts.

With the PCAC definition of κcrit also higher order lattice artifacts are small,

even with scalar mass values as small as 270 MeV. (cf. figure 2.3 on page 43,

figure 2.6 on page 46 and figure 2.7 on page 47)

• the effects of the explicit flavor symmetry breaking in mtmQCD are sizable

when the charged/neutral pseudo scalar mass splitting is considered. Never-

theless, the splitting is a lattice artifact and we could show that it vanishes

proportional to a2, see figure 2.8 on page 49.

• while simulations with pseudo scalar mass values below 300 MeV are also

possible with overlap fermions, a comparison of computational costs revealed

that simulations with twisted mass fermions are a factor of 20 to 70 faster

than simulations with overlap fermions.

Aiming at large scale simulations in full lattice QCD we developed – in addition

to the investigation of mtmQCD as the potential formulation – a new variant of the

Hybrid Monte Carlo algorithm in order to make full QCD simulations with light

quark masses affordable. The new variant, a HMC with a combination of mass
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preconditioning and multiple time scale integration as presented in chapter 3, is

based on the idea to precondition the fermion determinant in such a way that the

most expensive part contributes the least to the total molecular dynamics force and

can be therefore integrated on the largest time scale. It is applicable to a wide

variety of lattice Dirac operators and moreover straightforward to implement.

Our simulations clearly show that with this new HMC variant (full dynamical)

simulations with Wilson type fermions and realistic quark masses are possible with

reasonable computational effort. This we could illustrate in an update of the so

called “Berlin Wall” figure [105, 113]. With our HMC variant the “Wall” is shifted

definitely towards smaller values of mPS/mV, see figure 3.4 on page 77.

Taking the results of these two chapters together, we have now a sound basis

for performing large scale simulations with light quark masses. However, our first

investigations in full lattice QCD revealed a surprising result: we have shown in

chapter 4 that close enough to the continuum the phase structure of lattice QCD with

Wilson type fermions and the Wilson plaquette gauge action exhibits the expected

continuum phase structure distorted by lattice artifacts. Our investigation yielded

that in a range of lattice spacings between 0.2 and 0.13 fm there exists a first order

phase transition at the chiral point. This phase transition is characterized by a

jump in the plaquette expectation value, the existence of meta-stabilities and most

importantly by the fact that the minimal value of the charged pseudo scalar mass

is significantly larger than zero. For the investigated lattice spacing the latter value

lies well above 450 MeV.

This phenomenon finds its natural interpretation in terms of an effective poten-

tial model depicted in lattice chiral perturbation theory, where a first order phase

transition is predicted as one of two possible scenarios emerging due to O(a2) lattice

artifacts. We stress here that the first order phase transition is a generic property

of Wilson type fermions and it is not restricted to only the twisted mass formula-

tion, which was mainly used for the simulations. The phase structure is summarized

schematically in figure 4.8 on page 97.

This result on the one hand makes clear that indeed the knowledge of the phase

structure is an essential pre-requisite before starting large scale simulations that was

missing so far. On the other hand, the rather large minimal value of the charged

pseudo scalar mass does not allow for simulations with realistic quark masses at

affordable lattice spacings with mtmQCD and the Wilson plaquette gauge action.

However, the size of the lattice artifacts and hence the size of for instance the minimal

value of the pseudo scalar mass is certainly depending on the discretization of the

gauge action. There were already hints for this in the literature and we could confirm

that by adding a rectangular part to the Wilson plaquette gauge action the effects of

the phase transition can be reduced when compared to the Wilson plaquette gauge

action at equal lattice spacing. This means that for example with the DBW2 or the
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tree level improved Symanzik gauge action the minimal pseudo scalar mass value is

significantly reduced and we are optimistic that at lattice spacings of about 0.15 fm

dynamical simulations can be performed without being affected by the first order

phase transition.

Recapitulating, we think the results of this work exhibit a sound basis for future

large scale dynamical simulations with realistic masses and small enough lattice

spacing. Of course, the next natural step is to repeat a scaling test for twisted mass

QCD with nf = 2 dynamical flavors of quarks, as we presented it in chapter 2 for the

quenched approximation. In such a scaling test already some interesting continuum

extrapolations should become possible. Then, in case of a positive outcome, we will

proceed to nf = 2 + 1 + 1 dynamical quark flavors, with up- and down-quark mass

degenerate and strange- and charm-quark with different, non-degenerate masses. At

the latest in these simulations such interesting items like ρ-decay, string breaking,

π phase shift, or η and η′ meson masses will be addressed.
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Appendix A

Conventions

A.1 Dirac matrices

The following convention for the the Euclidean γ matrices is used:

γ0 =











0 0 +1 0

0 0 0 +1

+1 0 0 0

0 +1 0 0











, γ1 =











0 0 0 +i

0 0 +i 0

0 −i 0 0

−i 0 0 0











,

γ2 =











0 0 0 +1

0 0 −1 0

0 −1 0 0

+1 0 0 0











, γ3 =











0 0 +i 0

0 0 0 −i
−i 0 0 0

0 +i 0 0











.

(A-1)

They are hermitian and satisfy the anti-commutation relation

{γµ, γν} = 2δµν . (A-2)

With the above choice for γ0 we have chosen the chiral representation where γ5 =

γ1γ2γ3γ0 is diagonal:

γ5 =











+1 0 0 0

0 +1 0 0

0 0 −1 0

0 0 0 −1











. (A-3)

The projection operators on left- and right-handed chirality then read

P− =
1

2
(1− γ5) , P+ =

1

2
(1 + γ5) , (A-4)

respectively.
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A.2 Generators of SU(3)

The 3× 3 traceless hermitian generator matrices of SU(3) in the fundamental rep-

resentation may be chosen to have the standard form (Gell-Mann, 1962):

λ1 =
1

2





0 1 0

1 0 0

0 0 0



 , λ2 =
1

2





0 −i 0

i 0 0

0 0 0



 , λ3 =
1

2





1 0 0

0 −1 0

0 0 0



 ,

λ4 =
1

2





0 0 1

0 0 0

1 0 0



 , λ5 =
1

2





0 0 −i
0 0 0

i 0 0



 ,

λ6 =
1

2





0 0 0

0 0 1

0 1 0



 , λ7 =
1

2





0 0 0

0 0 −i
0 i 0



 , λ8 =
1

2
√

3





1 0 0

0 1 0

0 0 −2



 ,

(A-5)

They are normalized according to

Tr(λaλb) =
1

2
δab (A-6)

and obey the commutation relation

[λa, λb] = ifabcλc . (A-7)
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Algorithmic details

B.1 Even/odd preconditioning

In this appendix we describe how even/odd [106, 170] preconditioning can be used

in the HMC algorithm in presence of a twisted mass term. By setting the twisted

mass parameter to zero, even/odd preconditioning for the Wilson-Dirac operator

can easily be recovered from the formulae presented in the following.

We start with the lattice fermion action in the hopping parameter representation

in the χ-basis written as

S[χ, χ̄, U ] =
∑

x

{

χ̄(x)[1 + 2iκµγ5τ
3]χ(x)

− κχ̄(x)

4
∑

µ=1

[

U(x, µ)(r + γµ)χ(x+ aµ̂)

+ U †(x− aµ̂, µ)(r − γµ)χ(x− aµ̂)
]

}

≡
∑

x,y

χ̄(x)Mxyχ(y) .

(B-1)

similar to Eq. (1-46) in section 1.2.4. For convenience we define µ̃ = 2κµ. Using the

matrix M one can define the hermitian (two flavor) operator.

Q ≡ γ5M =

(

Q+

Q−

)

(B-2)
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where the sub-matrices Q± can be factorized as follows:

Q± = γ5

(

1± iµ̃γ5 Meo

Moe 1± iµ̃γ5

)

= γ5

(

M±
ee Meo

Moe M±
oo

)

=

(

γ5M
±
ee 0

γ5Moe 1

)(

1 (M±
ee)

−1Meo

0 γ5(M
±
oo −Moe(M

±
ee)

−1Meo)

)

.

(B-3)

Note that (M±
ee)

−1 can be computed to be

(1± iµ̃γ5)
−1 =

1∓ iµ̃γ5

1 + µ̃2
. (B-4)

Using det(Q) = det(Q+) det(Q−) the following relation can be derived

det(Q±) ∝ det(Q̂±)

Q̂± = γ5(M
±
oo −Moe(M

±
ee)

−1Meo) ,
(B-5)

where Q̂± is only defined on the odd sites of the lattice. In the HMC algorithm the

determinant is stochastically estimated using pseudo fermion field φo: Now we write

the determinant with pseudo fermion fields:

det(Q̂+Q̂−) =

∫

DφoDφ†
o exp(−SPF)

SPF ≡ φ†
o

(

Q̂+Q̂−
)−1

φo ,

(B-6)

where the fields φo are defined only on the odd sites of the lattice. In order to

compute the force corresponding to the effective action SPF we need the variation

of SPF with respect to the gauge fields (using δ(A−1) = −A−1δAA−1):

δSPF = −[φ†
o(Q̂

+Q̂−)−1δQ̂+(Q̂+)−1φo + φ†
o(Q̂

−)−1δQ̂−(Q̂+Q̂−)−1φo]

= −[X†
oδQ̂

+Yo + Y †
o δQ̂

−Xo]
(B-7)

with Xo and Yo defined on the odd sides as

Xo = (Q̂+Q̂−)−1φo, Yo = (Q̂+)−1φo = Q̂−Xo , (B-8)

where (Q̂±)† = Q̂∓ has been used. The variation of Q̂± reads

δQ̂± = γ5

(

−δMoe(M
±
ee)

−1Meo −Moe(M
±
ee)

−1δMeo

)

, (B-9)

and one finds

δSPF = −(X†δQ+Y + Y †δQ−X)

= −(X†δQ+Y + (X†δQ+Y )†)
(B-10)
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where X and Y are now defined over the full lattice as

X =

(

−(M−
ee)

−1MeoXo

Xo

)

, Y =

(

−(M+
ee)

−1MeoYo
Yo

)

. (B-11)

In addition δQ+ = δQ−,M †
eo = γ5Moeγ5 and M †

oe = γ5Meoγ5 has been used. Since

the bosonic part is quadratic in the φo fields, the φo are generated at the beginning

of each molecular dynamics trajectory with

φo = Q̂+R, (B-12)

where R is a random spinor field taken from a Gaussian distribution with norm one.

Inversion

In addition to even/odd preconditioning in the HMC algorithm as described above,

it can also be used to speed up the inversion of the fermion matrix.

Due to the factorization (B-3) the full fermion matrix can be inverted by inverting

the two matrices appearing in the factorization

(

M±
ee Meo

Moe M±
oo

)−1

=

(

1 (M±
ee)

−1Meo

0 (M±
oo −Moe(M

±
ee)

−1Meo)

)−1(
M±

ee 0

Moe 1

)−1

.

The two factors can be simplified as follows:

(

M±
ee 0

Moe 1

)−1

=

(

(M±
ee)

−1 0

−Moe(M
±
ee)

−1 1

)

and
(

1 (M±
ee)

−1Meo

0 (M±
oo −Moe(M

±
ee)

−1Meo)

)−1

=

(

1 −(M±
ee)

−1Meo(M
±
oo −Moe(M

±
ee)

−1Meo)
−1

0 (M±
oo −Moe(M

±
ee)

−1Meo)
−1

)

.

The complete inversion is now performed in two separate steps: First we compute

for a given source field φ = (φe, φo) an intermediate result ϕ = (ϕe, ϕo) by:

(

ϕe
ϕo

)

=

(

M±
ee 0

Moe 1

)−1(
φe
φo

)

=

(

(M±
ee)

−1φe
−Moe(M

±
ee)

−1φe + φo

)

.

This step requires only the application of Moe and (M±
ee)

−1, the latter of which is

given by Eq (B-4). The final solution ψ = (ψe, ψo) can then be computed with

(

ψe
ψo

)

=

(

1 (M±
ee)

−1Meo

0 (M±
oo −Moe(M

±
ee)

−1Meo)

)−1(
ϕe
ϕo

)

=

(

ϕe − (M±
ee)

−1Meoψo
ψo

)

,
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where we defined

ψo = (M±
oo −Moe(M

±
ee)

−1Meo)
−1ϕo .

Therefore the only inversion that has to be performed numerically is the one to

generate ψo from ϕo and this inversion involves only an operator that is better

conditioned than the original fermion operator.

B.2 Multiple mass solver

for twisted mass fermions

In this appendix we show that within the Wilson twisted mass fermion formulation

it is possible to apply the multi mass solver (MMS) [171, 172, 173] method to the

conjugate gradient (CG) algorithm. We will call this algorithm CG-M and give here

the details of the implementation.

The advantage of the MMS is that it allows the computation of the solution of

the following linear system

(A+ σ) x− b = 0 (B-13)

for several values of σ simultaneously, using only as many matrix-vector operations

as the solution of a single value of σ requires.

We want to invert the Wilson twisted mass operator at a certain value of the

twisted mass µ0 obtaining automatically all the solutions for other values µk (with

|µk| ≥ |µ0|). We use the twisted mass operator Dtm as defined in Eq. (1-47) and

denote the number of additional twisted mass values with Nm. The operator can be

split up as

Dtm = D
(0)
tm + i(µk − µ0)γ5τ

3, D
(0)
tm = DW +m0 + iµ0γ5τ

3 . (B-14)

The trivial observation is that

DtmD
†
tm = D

(0)
tmD

(0)†
tm + µ2

k − µ2
0 , (B-15)

where we have used γ5DWγ5 = D†
W . Now clearly we have a shifted linear system

(A+σk)x−b = 0 with A = D
(0)
tmD

(0)†
tm and σk = µ2

k−µ2
0. In the following we describe

the CG-M algorithm in order to solve the problem (A + σk)x − b = 0. The lower

index indicates the iteration steps of the solver, while the upper index k refers to

the shifted problem with σk.
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B.2. MULTIPLE MASS SOLVER FOR TWISTED MASS FERMIONS

CG −M Algorithm

xk0 = 0, r0 = pk0 = b, α−1 = ζk−1 = ζk0 = 1, βk0 = β0 = 0

for i = 0, 1, 2, · · ·

αn =
(rn, rn)

(pn, Apn)

ζkn+1 =
ζknαn−1

αnβn(1− ζk
n

ζk
n−1

) + αn−1(1− σkαn)

αkn = αn
ζkn+1

ζkn

xkn+1 = xkn + αknp
k
n

xn+1 = xn + αnpn

rn+1 = rn − αnApn
convergence check

βn+1 =
(rn+1, rn+1)

(rn, rn)

pn+1 = rn+1 + βn+1pn

βkn+1 = βn+1

ζkn+1α
k
n

ζknαn

pkn+1 = ζkn+1rn+1 + βkn+1p
k
n

end for

We give here the algorithm explicitly again, since it has a different definition of ζkn+1

compared to the one of Ref. [173]. This version allows to avoid roundoff errors when

σk = µ2
k − µ2

0 becomes too large.

We remind that when using a MMS the eventual preconditioning has to retain

the shifted structure of the linear system. This means for example that it is not

compatible with even/odd preconditioning.
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Appendix C

Tables

β 5.7 5.85 6.0 6.1 6.2 6.45

aµ1 0.2455(23) 0.1682(26) 0.1385(66) 0.1129(41) 0.1004(27) 0.0720(28)

aµ2 0.3237(16) 0.2256(22) 0.1764(42) 0.1482(27) 0.1298(23) 0.0914(27)

aµ3 0.4434(11) 0.3122(19) 0.2373(32) 0.2030(21) 0.1768(17) −
aµ4 0.6272(9) 0.4452(14) 0.3335(22) 0.2865(15) 0.2463(15) −
aµ5 0.7767(9) 0.5535(12) 0.4134(17) 0.3534(13) 0.3037(13) −
aµ6 0.9074(9) 0.6488(13) 0.4839(16) 0.4130(13) 0.3546(12) −
aµ7 1.0255(8) 0.7358(12) 0.5491(14) 0.4676(12) 0.4021(11) −

Table C.1: Values of amPS with pion definition of κcrit.

β 5.7 5.85 6.0 6.1 6.2 6.45

aµ1 0.0986(10) 0.0782(13) 0.0516(17) 0.0466(14) 0.0437(13) 0.0329(13)

aµ2 0.1195(10) 0.0890(12) 0.0632(11) 0.0546(09) 0.0500(11) 0.0361(11)

aµ3 0.1418(11) 0.1003(12) 0.0740(09) 0.0623(08) 0.0562(10) −
aµ4 0.1685(11) 0.1149(12) 0.0859(09) 0.0716(08) 0.0637(10) −
aµ5 0.1902(11) 0.1273(13) 0.0949(09) 0.0790(08) 0.0698(09) −
aµ6 0.2112(12) 0.1390(14) 0.1029(10) 0.0858(08) 0.0754(09) −
aµ7 0.2320(13) 0.1501(14) 0.1104(10) 0.0919(09) 0.0806(09) −

Table C.2: Values of afPS with pion definition of κcrit.
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β 5.7 5.85 6.0 6.2

aµ1 0.2323(18) 0.1640(23) 0.1217(66) 0.0934(24)

aµ2 0.3245(15) 0.2289(17) 0.1708(50) 0.1276(21)

aµ3 0.4598(12) 0.3232(13) 0.2396(33) 0.1779(18)

aµ4 0.6564(10) 0.4606(11) 0.3403(22) 0.2492(13)

aµ5 0.8114(10) 0.5701(10) 0.4214(17) 0.3071(12)

aµ6 0.9451(10) 0.6658(09) 0.4925(14) 0.3588(10)

aµ7 1.0647(09) 0.7530(09) 0.5579(14) 0.4062(09)

aµ8 0.3892(14) 0.2741(15) 0.2038(40) 0.1519(20)

aµ9 0.5678(11) 0.3984(12) 0.2948(26) 0.2160(16)

Table C.3: Values of amPS with PCAC definition of κcrit.

β 5.7 5.85 6.0 6.2

aµ1 0.1267(14) 0.0894(14) 0.0689(27) 0.0512(16)

aµ2 0.1345(13) 0.0947(13) 0.0711(13) 0.0532(13)

aµ3 0.1472(12) 0.1025(12) 0.0763(10) 0.0567(10)

aµ4 0.1697(12) 0.1159(12) 0.0858(10) 0.0633(08)

aµ5 0.1914(13) 0.1284(11) 0.0944(10) 0.0694(08)

aµ6 0.2134(14) 0.1402(11) 0.1025(10) 0.0751(08)

aµ7 0.2358(15) 0.1518(11) 0.1100(10) 0.0803(08)

aµ8 0.1403(13) 0.0983(12) 0.0734(11) 0.0548(11)

aµ9 0.1589(12) 0.1095(12) 0.0813(10) 0.0601(09)

Table C.4: Values of afPS with PCAC definition κPCAC
crit .

β 5.7 5.85 6.0 6.2

aµ1 0.716(67) 0.589(43) 0.458(30) 0.306(26)

aµ2 0.773(36) 0.591(19) 0.451(20) 0.317(20)

aµ3 0.854(20) 0.628(09) 0.467(12) 0.339(11)

aµ4 0.973(15) 0.701(05) 0.517(07) 0.378(05)

aµ5 1.076(11) 0.765(04) 0.560(06) 0.415(03)

aµ6 1.178(09) 0.834(03) 0.614(04) 0.452(02)

aµ7 1.277(08) 0.902(03) 0.666(03) 0.488(02)

aµ8 0.812(26) 0.606(13) 0.464(14) 0.327(16)

aµ9 0.919(14) 0.666(06) 0.494(08) 0.359(07)

Table C.5: Vector meson masses amV for all simulation points with the PCAC definition

κPCAC
crit .
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Appendix C Tables

mPS [GeV] fPS [GeV] mV [GeV]

0.272 0.1500(66) 0.904(102)

0.372 0.1538(45) 0.937(053)

0.432 0.1572(40) 0.955(042)

0.514 0.1631(36) 0.978(033)

0.624 0.1724(33) 1.027(026)

0.728 0.1823(31) 1.083(019)

0.900 0.2002(29) 1.198(012)

1.051 0.2161(28) 1.313(009)

1.177 0.2283(28) 1.410(007)

Table C.6: fPS and mV in the continuum (only data from PCAC definition κPCAC
crit ).
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Danken möchte ich auch Volkard Linke für seine Unterstützung und die an-
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