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Motivation

xkcd.com

• LHC collides protons

• LHC is a QCD
machine

• accurate predictions
for both
background and
signal
need understanding
of QCD
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Motivation

[Bethke, 2006]

Quantum Chromo-dynamics
the theory of strong interactions

describes both

• asymptotic freedom
at large energies
αs ≪ 1
→ perturbation theory

• confinement
at low energies
αs ≈ 1
→ non-perturbative

⇒ Lattice QCD is a non-perturbative, ab-initio method
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• large momentum transfer

• deep inelastic scattering
of an electron and a proton

• interested in cross-section

• to leading order in αs

σ(l(k)p(p) →l(k ′) + X) =
∫ 1

0
dx

∑

f

ff (x)σ(l(k)qf (xp) →

l(k ′) + qf (p
′))

• parton distribution functions ff :
probability density
of finding constituent
with momentum fraction x

• PDF’s are
non-perturbative
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Motivation: Hydrogen Atom versus Proton (QED vs. QCD)

• Hydrogen Atom:
• electron mass: 0.5 MeV
• proton mass: 938 MeV
• binding energy: 13.5 eV

• Proton:
• u-quark mass: ∼ 3 MeV
• d-quark mass: ∼ 6 MeV
• proton mass: 938 MeV

→ QCD origin of mass

• moreover: quarks cannot be
observed, confinement

• accuracy of strong coupling
αs(mZ ) = 0.119(1)

• fine structure constant
α−1 = 137.035 999 697(94)
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Flavour Singlet Pseudo-Scalar Mesons

• nine lightest pseudo-scalar
mesons show a peculiar
spectrum:

• 3 very light pions (140 MeV)
• Kaons and the η around

600 MeV
• the η′ has mass around 1 GeV

• The large mass of the η′ meson is thought to be caused by the
QCD vacuum structure and the U(1)A anomaly

• η′ meson is not a (would be) Goldstone Boson

• η′ is massive even in the chiral limit

• Lattice QCD allows to study this
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Chiral Symmetry

• in QCD with massless quarks
chiral symmetry is spontaneously broken

• consequences:
• 8 massless Goldstone bosons

in the limit of 3 massless quarks: 3 pions, 4 Kaons, η

• quark masses break chiral symmetry explicitly
e.g. pions acquire mass

m2
π ∝ (mu + md)

• Chiral Perturbation Theory (χPT) provides effective description
however, Low Energy Constants (LECs) are unknown

• lattice QCD offers the unique possibility
to investigate the quark mass dependence
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1 Lattice Methods
Regularisation
Monte Carlo for Lattice QCD
Theoretical Developments: O(a) Improvement

2 Physics Results
Meson Sector
Baryon Sector

3 Conclusion and Outlook
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Regularisation
Monte Carlo for Lattice QCD
Theoretical Developments: O(a) Improvement

QCD in Euclidean Space-Time

• expectation values in path-integral quantisation

〈O〉 ∝

∫

DAµDψ̄Dψ O e−S[Aµ,ψ̄,ψ]

• with action (Nf mass degenerate quark flavours, c = ~ = 1)

S[Aµ, ψ̄, ψ] =

∫

d4x
{

1
4

F 2
µν + ψ̄ (γµDµ + mq)ψ

}

= SG + Sf

• analogy: e−S can be interpreted as Boltzmann factor

• stochastic integration with Monte-Carlo methods
importance sampling

• still need to regularise the theory → Lattice
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Regularisation
Monte Carlo for Lattice QCD
Theoretical Developments: O(a) Improvement

Lattice Quantum Chromo-dynamics

Introduce finite space-time lattice L3 × T

t t t t

t t t t

t t t t

t t t t

ψ(x) ψ(x + aµ̂)
-

a

[Wilson, 1974, 1975]

• lattice spacing a

• momentum cut-off: kmax ∝ 1/a.

• fermionic fields on space-time points

• functional integral:
∫

Dψ 7→

∫

∏

x

dψ(x)

• what about the gauge potential Aµ?
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Lattice Quantum Chromo-dynamics

The principle of local gauge invariance

• gauge covariant derivative Dµ

Dµψ(x) = lim
a→0

1
a

[U(x , x + aµ̂)ψ(x + aµ̂) − ψ(x)]

• transformation laws

ψ(x) → V (x)ψ(x) , U(x , y) → V (x)U(x , y)V †(y)

with U,V ∈ SU(3)

• for infinitesimal a

U(x , x + aµ̂) = exp
[

−igAi
µ(x +

a
2
µ̂)λi + O(a3)

]
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Lattice Quantum Chromo-dynamics

The principle of local gauge invariance

space-time lattice L3 × T :

t t t t

t t t t

t t t t

t t t t

-

U(x , µ)

ψ(x) ψ(x + aµ̂)

-

6
�

?
U�

[Wilson, 1974, 1975]

• discretised gauge action

SG[U] =
∑

�

β

{

1 −
1
3

ReTr(U�)

}

(β = 6/g2
0 )

12 /43 The Quest of Solving QCD



Lattice Methods
Physics Results

Conclusion and Outlook

Regularisation
Monte Carlo for Lattice QCD
Theoretical Developments: O(a) Improvement

Lattice Quantum Chromo-dynamics

The principle of local gauge invariance

space-time lattice L3 × T :

t t t t

t t t t

t t t t

t t t t

-

U(x , µ)

ψ(x) ψ(x + aµ̂)

-

6
�

?
U�

[Wilson, 1974, 1975]

• discretised gauge action

SG[U] =
∑

�

β

{

1 −
1
3

ReTr(U�)

}

(β = 6/g2
0 )

• covariant difference operators

∇µψ(x) =
1
a

[

U(x , µ)ψ(x + aµ̂) − ψ(x)
]

∇∗
µψ(x) =

1
a

[

ψ(x) − U(x ,−µ)ψ(x − aµ̂)
]
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Wilson Formulation

Wilson Dirac Operator

DW[U] + m0 =
1
2

∑

µ

[

γµ(∇µ + ∇∗
µ) − a∇∗

µ∇µ

]

+ m0

• Wilson Term −a∇∗
µ∇µ

• solves the fermion doubling problem,

• but:
• chiral symmetry is explicitly broken, {DW, γ5} 6= 0,
• therefore m0 renormalises additively (and multiplicatively)

mq = m0 − mcrit ,

• leading lattice artifacts are O(a)
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QCD on the Lattice

• For given parameters lattice calculations are exact
(up to statistical errors). . .
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QCD on the Lattice

• For given parameters lattice calculations are exact
(up to statistical errors). . .

• but, there are dangerous animals on the lattice
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A Glimpse at the Extrapolations

1 go to infinite volume

2 remove cut-off at fixed volume and physics

a1/2 a1/4a1
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The Goal: Precision Lattice QCD Results

• . . . we need to control systematic errors:
• lattice spacing effects ⇒ continuum limit, lattice spacing a → 0,

⇒ remove leading order lattice artifacts

• finite size effects ⇒ thermodynamic limit, physical volume L3 → ∞,
⇒ use chiral effective field theories.

• chiral effects ⇒ chiral limit, mPS → mπ ,
⇒ use chiral effective field theories.

⇒ be aware: subtle interplay of limits

• from experience: we need
a < 0.1 fm,

L > 2 fm,

mPS < 300 MeV.
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Why are Fermions expensive to simulate?

• we need to evaluate (ψ Grassman valued):
∫

Dψ̄ Dψ e−ψ̄(γµDµ+m0)ψ ∝ det(γµDµ + m0)

• determinant can be represented by bosonic fields:

det(γµDµ + m0) ∝

∫

Dφ† Dφ e−φ†(γµDµ+m0)
−1φ

• solving linear equations

ξ = (γµDµ + m0)
−1φ

for ξ given φ using iterative solver (e.g. CG)
requires O(1000) applications of Dlat ≡ γµDµ + m0
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Why are Fermions expensive to simulate?

• original Hybrid Monte Carlo (HMC) algorithm
[Duane, Kennedy, Pendleton, Rowet, 1987]

typical parameter values: a = 0.1 fm,mPS = 350 MeV

• one application of Dlat per lattice site: 1400 flops
• 164 lattice: ∼ 90 Mflops
• solve ξ = (Dlat)−1φ 200 times: ∼ 200 × 260 Gflops= 50 Tflops
• 5000 configurations: ∼ 250 Pflops

• Scaling of the 4-dimensional problem:
• keep fixed box size: L · a ≈ 2 fm
• continuum limit a → 0:

halfing a ⇒ no. of points increase by 24

• in addition: factor 4 to 8 from algorithm

• wait for bigger computers ...
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Why are Fermions expensive to simulate?

• original Hybrid Monte Carlo (HMC) algorithm
[Duane, Kennedy, Pendleton, Rowet, 1987]

typical parameter values: a = 0.1 fm,mPS = 350 MeV

• one application of Dlat per lattice site: 1400 flops
• 164 lattice: ∼ 90 Mflops
• solve ξ = (Dlat)−1φ 200 times: ∼ 200 × 260 Gflops= 50 Tflops
• 5000 configurations: ∼ 250 Pflops

• Scaling of the 4-dimensional problem:
• keep fixed box size: L · a ≈ 2 fm
• continuum limit a → 0:

halfing a ⇒ no. of points increase by 24

• in addition: factor 4 to 8 from algorithm

• wait for bigger computers ... or invent better algorithms!
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Algorithmic Improvements

Cost for 1000 configurations, a = 0.08 fm, Wilson fermions

Tflops · years

Urbach et al.

Ukawa

0.00

mPS/mV

10.50

1

0

• trick:
separate slowly varying
expensive modes
from
rapidly varying
cheap modes

• integrate on multiple
time-scales

• much faster than standard
HMC

• similar developments
[Lüscher; QCDSF; Peardon et al.; Clark,

Kennedy]
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Computer Resources

Lattice QCD still needs Peta Flop machines

• e.g. Jugene at FZ Jülich

• 72 racks with 1 Peta Flop (peak)

• special programming
needed

• code [Jansen, C.U., 2009]

speedup:

1283 × 288
1283 × 256
643 × 128
323 × 64

# processors [103]

T
fl
o
p

1000100101

1000

100

10

1
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Resources vs. Algorithm

• real time needed for a
standard problem

• machine only reflects
Moore’s law

• algorithmic improvements
contribute almost two
orders of magnitude
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Lattice Artifacts

• any quantity affected by lattice artifacts

〈O〉lat = 〈O〉c + a 〈O′〉c + a2 〈O′′〉c

operators O′,O′′, ... depend on O and on the symmetries of your
action

• discretisation offers large freedom
not unique

• add (irrelevant) counter terms to the action
⇒ Symanzik improvement programme

• or try to find a particular discretisation
where all terms linear in a vanish by symmetries
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Twisted Mass Fermions

• Consider the continuum 2-flavour fermionic action
[Frezzotti, Grassi, Sint, Weisz, ’99]

SF =

∫

d4x ψ̄ [D + mq + iµγ5τ3] ψ

with
• twisted mass parameter µ
• τ3 third Pauli matrix acting in flavour space

• SF is form invariant under a change of variables with angle ω:

ψ → eiωγ5τ3/2ψ, ψ̄ → ψ̄eiωγ5τ3/2.

→ more general form of the action
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Wilson Twisted Mass Fermions

Wilson Twisted Mass Dirac operator [Frezzotti, Grassi, Sint, Weisz, ’99]

Dtm =
1
2

∑

µ

[

γµ(∇µ + ∇∗
µ)−a∇∗

µ∇µ

]

+ m0 + iµγ5τ3

• when m0 = mcrit (maximal twist)
physical observables are O(a) improved
[Frezzotti, Rossi, 2003]

(proof basically by Parity symmetry of continuum action in Symanzik expansion)

Drawback:

• flavour symmetry explicitly broken
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O(a) Improvement at Maximal Twist

• shown to work in practise
in the quenched approximation
[Jansen et al., 2004, 2005]

[Abdel-Rehim et al., 2004, 2005]

• twisted mass µ relates directly
to physical quark mass
only multiplicative renormalisation

mPS = 718 MeV
mPS = 515 MeV
mPS = 298 MeV

fPS [MeV]

a2 [fm2]

0.0250.01250

200

150

100

• only one parameter m0 → mcrit must be tuned
no additional operator improvement!

• many mixings under renormalisation are simplified

• flavour symmetry breaking appears at O(a2)
in practise only important for neutral pion mass
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Meson Sector
Baryon Sector

Choice of Ensembles

• collaborative effort:
European Twisted Mass Collaboration (ETMC)

• Nf = 2 mass-degenerate Wilson quarks at maximal twist

• four values of the lattice spacings:

a ∼ 0.10 fm, a ∼ 0.09 fm, a ∼ 0.07 fm, a ∼ 0.055 fm

in terms of inverse gauge coupling:
β = 3.80, β = 3.9, β = 4.05, β = 4.2

• values for mPS range from 260 to 600 MeV

• L3 × 2L lattices with L > 2 fm

• ≥ 5000 equilibrated trajectories per ensemble
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Pion Sector: mPS and fPS

• mPS from exponential decay
of appropriate correlation functions

• fPS can be extracted at maximal twist from

fPS =
2µq

m2
PS

|〈0|P1(0)|π〉|

[Frezzotti, Grassi, Sint, Weisz]

due to an exact lattice Ward identity

• no renormalisation factor needed!

• since Zµ = 1/ZP

• similar to overlap fermions (exact chiral symmetry)

• unlike pure Wilson
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Pion Sector: Mass Determination

B5

B3

B1ameff

t/a

2520151050

0.4

0.3

0.2

0.1

• correlator (zero momentum):

〈O(0)O(t)〉

∝
∑

n

〈0|O(0)|n〉e−Ht 〈n|O(0)|0〉

∝
∑

n

e−(En−E0)t

• pseudo-scalar correlator

Cπ(t/a) ∝ e−amPSt/a

• effective mass:

ameff = log
Cπ(t/a)

Cπ(t/a + 1)
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Continuum Extrapolation fPS in Finite Volume

rχ
0
mPS = 0.614

rχ
0
mPS = 0.900

rχ
0
mPS = 1.100

rχ
0
fPS

(a/rχ
0
)2

0.060.040.020

0.42

0.38

0.34

0.30

0.26

• finite volume L/r0 ∼ 5.0

• linear interpolation to reference
points
r0mPS = const

• linear extrapolation a2 → 0
largest a-value not included

⇒ Only small lattice artifacts!

Can we use continuum chiral perturbation theory to describe the
data?

[ETMC, C.U., 2009]
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Quark Mass Dependence and Chiral Perturbation Theory

• chiral perturbation theory χPT: low energy effective theory

• describe mass dependence with nf = 2 NLO χPT
plus leading lattice artifacts

m2
PS = χµ

h

1 + ξ log(χµ/Λ2
3 + Dma2)

i

K 2
m(L)

fPS = f0
h

1 − 2ξ log(χµ/Λ2
4) + Df a

2
i

Kf (L)

with χµ = 2B̂0Zµµq and ξ = χµ/(2πf0)2

• finite size corrections Km(L),Kf (L) from continuum χPT
[Gasser, Leutwyler, 1987, 1988; Colangelo, Dürr, Haefeli, 2005]

• fit simultaneously to our data at a = 0.085 fm and a = 0.066 fm

• 16 data points 300 MeV ≤ mPS ≤ 500 MeV

33 /43 The Quest of Solving QCD



Lattice Methods
Physics Results

Conclusion and Outlook

Meson Sector
Baryon Sector

Pion Sector: (mPS)
2 as Function of the Quark Mass

β = 4.05 data
β = 3.90 data
β = 4.05 fit
β = 3.90 fit

continuum fit

CL = 0.30

χ2/dof = 19/17

rχ
0
µR

(r
χ 0
m

P
S
)2

0.10.050

1.2

0.8

0.4

0

• at first glance completely
linear

β = 4.05, L = 24 data
β = 4.05, L = 32 data

β = 3.90, L = 32
β = 3.90, L = 24

β = 4.05 fit
β = 3.90 fit

continuum fit

CL = 0.30
χ2/dof = 19/17

rχ
0
µR

(r
χ 0
m

P
S
)2
/
(r
χ 0
µ

R
)

0.10.050

13

11

9

• sensitivity to Λ3 clearly
visible
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Pion-Sector: fPS as Function of the Quark Mass

β = 4.05, L = 24 data
β = 4.05, L = 32 data
β = 3.90, L = 32 data
β = 3.90, L = 24 data

β = 4.05 fit
β = 3.90 fit

continuum fit

CL = 0.30

χ2/dof = 19/17

rχ
0
µR

rχ 0
f P

S

0.10.050

0.4

0.35

0.3

0.25

some results:

mu,d [MeV]† 3.54(19)(+16
−17)

ℓ̄3 3.50(9)(+9
−30)

ℓ̄4 4.66(4)(+4
−33)

|Σ|1/3 [MeV]† 270(5)(+3
−4)

f0 [MeV] 121.5(0.1)(+1.1
−0.1)

fπ/f0 1.0755(6)(+8
−94)

†: at 2 GeV in MS

• ℓ̄3,4 ≡ 2 log(Λ3,4/mπ)

• control systematics by averaging over O(80) different fits

[ETMC, 2009]
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ππ Scattering: S-wave Scattering Length aI=2
ππ

1 1.5 2 2.5 3 3.5
mπ/fπ

-0.5

-0.4

-0.3

-0.2

-0.1

0

m
πa π

πI=
2

LO χ-PT
NLO χ-PT
L=2.1 fm a=0.086 fm
L=2.7 fm a=0.086 fm
L=2.1 fm a=0.067 fm
NPLQCD (2007)
CP-PACS (2004)
E865 at BNL (2003)

[ETMC, Feng, Jansen, Renner, 2009]

• Lüscher formula:
don’t fear
but use finite volume!

• aI=2
ππ from

energy shift
in finite volume

• extrapolated using χPT

mπaI=2
ππ = −0.04385(28)(38)
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Flavour Singlet Pseudo-Scalar Mesons

• η′ acquires mass through QCD vacuum structure
and anomaly

• 2 + 1 flavours of quarks:
mixing between light and strange interpolating operators

η ≈ 0.58(ūγ5u + d̄γ5d) − 0.57s̄γ5s

η′ ≈ 0.40(ūγ5u + d̄γ5d) + 0.82s̄γ5s

• 2 flavours of quarks:
only one singlet state (η2) which is related to the “real world”
η′(958)

• η2 should have mass around 800 MeV [McNeile, Michael, 2000]

37 /43 The Quest of Solving QCD



Lattice Methods
Physics Results

Conclusion and Outlook

Meson Sector
Baryon Sector

Flavour Singlet Pseudo-Scalar Meson η2

Comparison of quark mass dependence of mPS and mη2

mη, a = 0.0066 fm
mη, a = 0.0085 fm
mPS, a = 0.0066 fm
mPS, a = 0.0085 fm

µR [MeV]

m
2

[G
eV

2
]

80706050403020100

1.0

0.8

0.6

0.4

0.2

0.0

• η2 mass results
down to mPS ∼ 300 MeV

• small lattice artifacts

• η2 data consistent
with non-zero value
in the chiral limit

• mη2 ≈ 880 MeV

[ETMC: K. Jansen, C. Michael, C.U., 2008]
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Chiral Extrapolation of the Nucleon Mass

using HBχPT [Jenkins, Manohar, 1991; Becher, Leutwyler, 1999]

mN = MN − 4c1χµ −
6g2

A

32πf 2
0

(χµ)
3/2

a = 0.066 fm, L = 32
a = 0.085 fm, L = 32
a = 0.085 fm, L = 24

HBχPT

µR [MeV]

m
N

[G
eV

]

806040200

1.60

1.50

1.40

1.30

1.20

1.10

1.00

0.90

0.80

• finite volume effects for smallest
mass value at β = 3.9 negligible

• mN = 962(45)(10)(3)

• c1 = −1.13(27)(5)(20)
gA = 1.13(21)(5)(10)

• still large uncertainty
can we do better?

• does the extrapolation work?
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Moments of Parton Distribution Functions of the Nucleon

Lattice can compute only moments of PDF’s

[Renner, 2009]

• curvature hardly visible

• finite size effects?

• need even smaller quark
masses!
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Meson Sector
Baryon Sector

A Collection of Results

[ETMC, 2009]
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Conclusion

Lattice QCD has made significant progress towards solving QCD

• improved algorithms

• largely reduced systematic errors
• starting to obtain phenomenologically intersting physical results

• masses and decay constants
• scattering properties
• hadron structure
• ...

Lattice QCD offers the opportunity to work on

• algorithm and computer oriented questions

• quantum field theoretical questions

• interesting physics
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Outlook

In lattice QCD

• 2 + 1 + 1 quark flavours (in progress),

• higher precision,

• more observables, ...

What, if the Higgs mechanism is not realised in nature?

• there are other ways to address electroweak symmetry breaking
• for instance extended technicolour

• strongly coupled gauge theories
• must have other properties than QCD:

walking and conformal theories

• one possible future challenge for lattice gauge theory
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